
NAME
ieee80211_scan - 802.11 scanning support

SYNOPSIS
#include <net80211/ieee80211_var.h>

int

ieee80211_start_scan(struct ieee80211vap *, int flags, u_int duration, u_int mindwell, u_int maxdwell,

u_int nssid, const struct ieee80211_scan_ssid ssids[]);

int

ieee80211_check_scan(struct ieee80211vap *, int flags, u_int duration, u_int mindwell, u_int maxdwell,

u_int nssid, const struct ieee80211_scan_ssid ssids[]);

int

ieee80211_check_scan_current(struct ieee80211vap *);

int

ieee80211_bg_scan(struct ieee80211vap *, int);

int

ieee80211_cancel_scan(struct ieee80211vap *);

int

ieee80211_cancel_scan_any(struct ieee80211vap *);

int

ieee80211_scan_next(struct ieee80211vap *);

int

ieee80211_scan_done(struct ieee80211vap *);

int

ieee80211_probe_curchan(struct ieee80211vap *, int);

void

ieee80211_add_scan(struct ieee80211vap *, const struct ieee80211_scanparams *,

const struct ieee80211_frame *, int subtype, int rssi, int noise);

void

IEEE80211_SCAN(9) FreeBSD Kernel Developer’s Manual IEEE80211_SCAN(9)

FreeBSD 14.0-RELEASE-p6 March 29, 2010 FreeBSD 14.0-RELEASE-p6



ieee80211_scan_timeout(struct ieee80211com *);

void

ieee80211_scan_assoc_fail(struct ieee80211vap *, const uint8_t mac[IEEE80211_ADDR_LEN],

int reason);

void

ieee80211_scan_flush(struct ieee80211vap *);

void

ieee80211_scan_iterate(struct ieee80211vap *, ieee80211_scan_iter_func, void *);

void

ieee80211_scan_dump_channels(const struct ieee80211_scan_state *);

void

ieee80211_scanner_register(enum ieee80211_opmode, const struct ieee80211_scanner *);

void

ieee80211_scanner_unregister(enum ieee80211_opmode, const struct ieee80211_scanner *);

void

ieee80211_scanner_unregister_all(const struct ieee80211_scanner *);

const struct ieee80211_scanner *

ieee80211_scanner_get(enum ieee80211_opmode);

DESCRIPTION
The net80211 software layer provides an extensible framework for scanning. Scanning is the procedure

by which a station locates a BSS to join (in infrastructure and IBSS mode), or a channel to use (when

operating as an AP or an IBSS master). Scans are either "active" or "passive". An active scan causes

one or more ProbeRequest frames to be sent on visiting each channel. A passive request causes each

channel in the scan set to be visited but no frames to be transmitted; the station only listens for traffic.

Note that active scanning may still need to listen for traffic before sending ProbeRequest frames

depending on regulatory constraints.

A scan operation involves constructing a set of channels to inspect (the scan set), visiting each channel

and collecting information (e.g. what BSS are present), and then analyzing the results to make decisions

such as which BSS to join. This process needs to be as fast as possible so net80211 does things like

intelligently construct scan sets and dwell on a channel only as long as necessary. Scan results are

IEEE80211_SCAN(9) FreeBSD Kernel Developer’s Manual IEEE80211_SCAN(9)

FreeBSD 14.0-RELEASE-p6 March 29, 2010 FreeBSD 14.0-RELEASE-p6



cached and the scan cache is used to avoid scanning when possible and to enable roaming between

access points when operating in infrastructure mode.

Scanning is handled by pluggable modules that implement policy per-operating mode. The core

scanning support provides an infrastructure to support these modules and exports a common API to the

rest of the net80211 layer. Policy modules decide what channels to visit, what state to record to make

decisions, and selects the final station/channel to return as the result of a scan.

Scanning is done synchronously when initially bringing a vap to an operational state and optionally in

the background to maintain the scan cache for doing roaming and rogue AP monitoring. Scanning is not

tied to the net80211 state machine that governs vaps except for linkage to the IEEE80211_S_SCAN

state. Only one vap at a time may be scanning; this scheduling policy is handled in

ieee80211_new_state() and is transparent to scanning code.

Scanning is controlled by a set of parameters that (potentially) constrains the channel set and any desired

SSID’s and BSSID’s. net80211 comes with a standard scanner module that works with all available

operating modes and supports "background scanning" and "roaming" operation.

SCANNER MODULES
Scanning modules use a registration mechanism to hook into the net80211 layer. Use

ieee80211_scanner_register() to register a scan module for a particular operating mode and

ieee80211_scanner_unregister() or ieee80211_scanner_unregister_all() to clear entries (typically on

module unload). Only one scanner module can be registered at any time for an operating mode.

DRIVER SUPPORT
Scanning operations are usually managed by the net80211 layer. Drivers must provide ic_scan_start and

ic_scan_stop methods that are called at the start of a scan and when the work is done; these should

handle work such as enabling receive of Beacon and ProbeResponse frames and disable any BSSID

matching. The ic_set_channel method is used to change channels while scanning. net80211 will

generate ProbeRequest frames and transmit them using the ic_raw_xmit method. Frames received while

scanning are dispatched to net80211 using the normal receive path. Devices that off-load scan work to

firmware most easily mesh with net80211 by operating on a channel-at-a-time basis as this defers

control to net80211’s scan machine scheduler. But multi-channel scanning is supported if the driver

manually dispatches results using ieee80211_add_scan() routine to enter results into the scan cache.

SCAN REQUESTS
Scan requests occur by way of the IEEE80211_SCAN_REQUEST ioctl or through a change in a vap’s

state machine that requires scanning. In both cases the scan cache can be checked first and, if it is

deemed suitably "warm" then it’s contents are used without leaving the current channel. To start a scan

without checking the cache ieee80211_start_scan() can be called; otherwise ieee80211_check_scan()

IEEE80211_SCAN(9) FreeBSD Kernel Developer’s Manual IEEE80211_SCAN(9)

FreeBSD 14.0-RELEASE-p6 March 29, 2010 FreeBSD 14.0-RELEASE-p6



can be used to first check the scan cache, kicking off a scan if the cache contents are out of date. There

is also ieee80211_check_scan_current() which is a shorthand for using previously set scan parameters

for checking the scan cache and then scanning.

Background scanning is done using ieee80211_bg_scan() in a co-routine fashion. The first call to this

routine will start a background scan that runs for a limited period of time before returning to the BSS

channel. Subsequent calls advance through the scan set until all channels are visited. Typically these

later calls are timed to allow receipt of frames buffered by an access point for the station.

A scan operation can be canceled using ieee80211_cancel_scan() if it was initiated by the specified vap,

or ieee80211_cancel_scan_any() to force termination regardless which vap started it. These requests are

mostly used by net80211 in the transmit path to cancel background scans when frames are to be sent.

Drivers should not need to use these calls (or most of the calls described on this page).

The ieee80211_scan_next() and ieee80211_scan_done() routines do explicit iteration through the scan

set and should not normally be used by drivers. ieee80211_probe_curchan() handles the work of

transmitting ProbeRequest frames when visiting a channel during an active scan. When the channel

attributes are marked with IEEE80211_CHAN_PASSIVE this function will arrange that before any

frame is transmitted 802.11 traffic is first received (in order to comply with regulatory constraints).

Min/max dwell time parameters are used to constrain time spent visiting a channel. The maximum

dwell time constrains the time spent listening for traffic. The minimum dwell time is used to reduce this

time--when it is reached and one or more frames have been received then an immediate channel change

will be done. Drivers can override this behaviour through the iv_scan_mindwell method.

SCAN CACHE MANAGEMENT
The scan cache contents are managed by the scan policy module and are opaque outside this module.

The net80211 scan framework defines API’s for interacting. The validity of the scan cache contents are

controlled by iv_scanvalid which is exported to user space through the IEEE80211_SCAN_VALID

request.

The cache contents can be explicitly flushed with ieee80211_scan_flush() or by setting the

IEEE80211_SCAN_FLUSH flag when starting a scan operation.

Scan cache entries are created with the ieee80211_add_scan() routine; usually on receipt of Beacon or

ProbeResponse frames. Existing entries are typically updated based on the latest information though

some information such as RSSI and noise floor readings may be combined to present an average.

The cache contents is aged through ieee80211_scan_timeout() calls. Typically these happen together

with other station table activity; every IEEE80211_INACT_WAIT seconds (default 15).

IEEE80211_SCAN(9) FreeBSD Kernel Developer’s Manual IEEE80211_SCAN(9)

FreeBSD 14.0-RELEASE-p6 March 29, 2010 FreeBSD 14.0-RELEASE-p6



Individual cache entries are marked usable with ieee80211_scan_assoc_success() and faulty with

ieee80211_scan_assoc_fail() with the latter taking an argument to identify if there was no response to

Authentication/Association requests or if a negative response was received (which might hasten cache

eviction or blacklist the entry).

The cache contents can be viewed using the ieee80211_scan_iterate() call. Cache entries are exported in

a public format that is exported to user applications through the IEEE80211_SCAN_RESULTS request.

SEE ALSO
ioctl(2), ieee80211(9), ieee80211_proto(9)

IEEE80211_SCAN(9) FreeBSD Kernel Developer’s Manual IEEE80211_SCAN(9)

FreeBSD 14.0-RELEASE-p6 March 29, 2010 FreeBSD 14.0-RELEASE-p6


