
NAME
net80211_vap - 802.11 network layer virtual radio support

SYNOPSIS
#include <net80211/ieee80211_var.h>

int

ieee80211_vap_setup(struct ieee80211com *, struct ieee80211vap *, const char name[IFNAMSIZ],

int unit, int opmode, int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],

const uint8_t macaddr[IEEE80211_ADDR_LEN]);

int

ieee80211_vap_attach(struct ieee80211vap *, ifm_change_cb_t media_change,

ifm_stat_cb_t media_stat);

void

ieee80211_vap_detach(struct ieee80211vap *);

DESCRIPTION
The net80211 software layer provides a support framework for drivers that includes a virtual radio API

that is exported to users through network interfaces (aka vaps) that are cloned from the underlying

device. These interfaces have an operating mode (station, adhoc, hostap, wds, monitor, etc.) that is fixed

for the lifetime of the interface. Devices that can support multiple concurrent interfaces allow multiple

vaps to be cloned.

The virtual radio interface defined by the net80211 layer means that drivers must be structured to follow

specific rules. Drivers that support only a single interface at any time must still follow these rules.

The virtual radio architecture splits state between a single per-device ieee80211com structure and one or

more ieee80211vap structures. Vaps are created with the SIOCIFCREATE2 request. This results in a

call into the driver’s ic_vap_create method where the driver can decide if the request should be accepted.

The vap creation process is done in three steps. First the driver allocates the data structure with

malloc(9). This data structure must have an ieee80211vap structure at the front but is usually extended

with driver-private state. Next the vap is setup with a call to ieee80211_vap_setup(). This request

initializes net80211 state but does not activate the interface. The driver can then override methods setup

by net80211 and setup driver resources before finally calling ieee80211_vap_attach() to complete the

process. Both these calls must be done without holding any driver locks as work may require the

process block/sleep.

IEEE80211_VAP(9) FreeBSD Kernel Developer’s Manual IEEE80211_VAP(9)

FreeBSD 14.2-RELEASE August 4, 2009 FreeBSD 14.2-RELEASE



A vap is deleted when an SIOCIFDESTROY ioctl request is made or when the device detaches (causing

all associated vaps to automatically be deleted). Delete requests cause the ic_vap_delete method to be

called. Drivers must quiesce the device before calling ieee80211_vap_detach() to deactivate the vap and

isolate it from activities such as requests from user applications. The driver can then reclaim resources

held by the vap and re-enable device operation. The exact procedure for quiescing a device is

unspecified but typically it involves blocking interrupts and stopping transmit and receive processing.

MULTI-VAP OPERATION
Drivers are responsible for deciding if multiple vaps can be created and how to manage them. Whether

or not multiple concurrent vaps can be supported depends on a device’s capabilities. For example,

multiple hostap vaps can usually be supported but many devices do not support assigning each vap a

unique BSSID. If a device supports hostap operation it can usually support concurrent station mode

vaps but possibly with limitations such as losing support for hardware beacon miss support. Devices

that are capable of hostap operation and can send and receive 4-address frames should be able to support

WDS vaps together with an ap vap. But in contrast some devices cannot support WDS vaps without at

least one ap vap (this however can be finessed by forcing the ap vap to not transmit beacon frames). All

devices should support the creation of any number of monitor mode vaps concurrent with other vaps but

it is the responsibility of the driver to allow this.

An important consequence of supporting multiple concurrent vaps is that a driver’s iv_newstate method

must be written to handle being called for each vap. Where necessary, drivers must track private state

for all vaps and not just the one whose state is being changed (e.g. for handling beacon timers the driver

may need to know if all vaps that beacon are stopped before stopping the hardware timers).

SEE ALSO
ieee80211(9), ifnet(9), malloc(9)

IEEE80211_VAP(9) FreeBSD Kernel Developer’s Manual IEEE80211_VAP(9)

FreeBSD 14.2-RELEASE August 4, 2009 FreeBSD 14.2-RELEASE


