
NAME
if - "use" a Perl module if a condition holds

SYNOPSIS
use if CONDITION, "MODULE", ARGUMENTS;

no if CONDITION, "MODULE", ARGUMENTS;

DESCRIPTION
"use if"

The "if" module is used to conditionally load another module. The construct:

use if CONDITION, "MODULE", ARGUMENTS;

... will load "MODULE" only if "CONDITION" evaluates to true; it has no effect if "CONDITION"

evaluates to false. (The module name, assuming it contains at least one "::", must be quoted when ’use

strict "subs";’ is in effect.) If the CONDITION does evaluate to true, then the above line has the same

effect as:

use MODULE ARGUMENTS;

For example, the Unicode::UCD module’s charinfo function will use two functions from

Unicode::Normalize only if a certain condition is met:

use if defined &DynaLoader::boot_DynaLoader,

"Unicode::Normalize" => qw(getCombinClass NFD);

Suppose you wanted "ARGUMENTS" to be an empty list, i.e., to have the effect of:

use MODULE ();

You can’t do this with the "if" pragma; however, you can achieve exactly this effect, at compile time,

with:

BEGIN { require MODULE if CONDITION }

"no if"
The "no if" construct is mainly used to deactivate categories of warnings when those categories would

produce superfluous output under specified versions of perl.

For example, the "redundant" category of warnings was introduced in Perl-5.22. This warning flags

if(3) Perl Programmers Reference Guide if(3)

perl v5.34.3 2023-11-28 if(3)

certain instances of superfluous arguments to "printf" and "sprintf". But if your code was running

warnings-free on earlier versions of perl and you don’t care about "redundant" warnings in more recent

versions, you can call:

use warnings;

no if $] >= 5.022, q|warnings|, qw(redundant);

my $test = { fmt => "%s", args => [qw(x y)] };

my $result = sprintf $test->{fmt}, @{$test->{args}};

The "no if" construct assumes that a module or pragma has correctly implemented an "unimport()"

method -- but most modules and pragmata have not. That explains why the "no if" construct is of

limited applicability.

BUGS
The current implementation does not allow specification of the required version of the module.

SEE ALSO
Module::Requires can be used to conditionally load one or modules, with constraints based on the

version of the module. Unlike "if" though, Module::Requires is not a core module.

Module::Load::Conditional provides a number of functions you can use to query what modules are

available, and then load one or more of them at runtime.

The provide module from CPAN can be used to select one of several possible modules to load based on

the version of Perl that is running.

AUTHOR
Ilya Zakharevich <mailto:ilyaz@cpan.org>.

COPYRIGHT AND LICENCE
This software is copyright (c) 2002 by Ilya Zakharevich.

This is free software; you can redistribute it and/or modify it under the same terms as the Perl 5

programming language system itself.

if(3) Perl Programmers Reference Guide if(3)

perl v5.34.3 2023-11-28 if(3)

