
NAME
iicmux - I2C bus mulitiplexer framework

SYNOPSIS
To compile this driver into the kernel, place the following line in your kernel configuration file:

device iicmux

Alternatively, to load the driver as a module at boot time, place the following line in loader.conf(5):

iicmux_load="YES"

Note that it is usually not necessary to explicitly load the driver module, as it will be loaded

automatically along with the driver for the specific mux hardware in use.

DESCRIPTION
The iicmux framework provides support code to help implement drivers for various I2C bus multiplexer

(mux) hardware. iicmux is not a standalone driver, it is a collection of support functions and driver

methods which are used by individual mux hardware drivers. It will be loaded automatically when

needed by a mux hardware driver. This manual page provides an overview of the I2C mux framework

and its behavior.

Generally speaking, an I2C mux is connected to an upstream I2C bus, and to one or more downstream

I2C buses, and it can be commanded to connect any one of the downstream buses to the upstream bus.

Some hardware may be able to connect multiple downstream buses at the same time, but that concept is

not supported by iicmux.

The iicmux framework operates automatically when I2C slave devices initiate I/O. It does not require

(or even allow for) any external control to select the active downstream bus.

When there is no I/O in progress, the mux is said to be in the "idle" state. Some mux hardware has the

ability to disconnect all downstream buses when in an idle state. Other hardware must always have one

of the downstream buses connected. Individual mux hardware drivers typically provide a way to select

which downstream bus (if any) should be connected while in the idle state. In the absence of such

configuration, whichever downstream bus was last used remains connected to the upstream bus.

When an I2C slave device on a bus downstream of a mux initiates I/O, it first requests exclusive use of

the bus by calling iicbus_request_bus(). This request is communicated to the bus’s parent, which is the

iicmux framework mux driver. Once exclusive bus ownership is obtained, the mux driver connects the

upstream I2C bus to the downstream bus which hosts the slave device that requested bus ownership.

IICMUX(4) FreeBSD Kernel Interfaces Manual IICMUX(4)

FreeBSD 14.0-RELEASE-p11 January 1, 2020 FreeBSD 14.0-RELEASE-p11



The mux hardware maintains that upstream-to-downstream connection until the slave device calls

iicbus_release_bus(). Before releasing ownership, the mux driver returns the mux hardware to the idle

state.

FDT CONFIGURATION
On an fdt(4) based system, an I2C mux device node is defined as a child node of its upstream I2C bus

when the mux device is an I2C slave itself. It may be defined as a child node of any other bus or device

in the system when it is not an I2C slave, in which case the i2c-parent property indicates which upstream

bus the mux is attached to. In either case, the children of the mux node are additional I2C buses, which

will have one or more I2C slave devices described in their child nodes.

Drivers using the iicmux framework conform to the standard i2c/i2c-mux.txt bindings document.

HINTS CONFIGURATION
On a device.hints(5) based system, these values are configurable for iicmux framework drivers :

hint.<driver>.<unit>.at

The upstream iicbus(4) the iicmux instance is attached to.

When configured via hints, the driver automatically adds an iicbus instance for every downstream bus

supported by the chip. There is currently no way to indicate used versus unused downstream buses.

SEE ALSO
iicbus(4)

HISTORY
The iicmux framework first appeared in FreeBSD 13.0.

IICMUX(4) FreeBSD Kernel Interfaces Manual IICMUX(4)

FreeBSD 14.0-RELEASE-p11 January 1, 2020 FreeBSD 14.0-RELEASE-p11


