FS(5)

NAME

FreeBSD File Formats Manual FS(5)

fs, inode - format of file system volume

SYNOPSIS

#include <sys/param.h>
#include <ufgffs/fsh>

#include <systypes.h>
#include <sys/lock.h>
#include <sygextattr.h>
#include <sygacl.h>
#include <ufs/ufs/quota.h>
#include <ufgufgdinode.h>
#include <ufgufs/extattr.h>

DESCRIPTION
The files <fs.h> and <inode.h> declare several structures, defined variables and macros which are used
to create and manage the underlying format of file system objects on random access devices (disks).

The block size and number of blocks which comprise afile system are parameters of the file system.
Sectors beginning at BBLOCK and continuing for BBSIZE are used for a disklabel and for some
hardware primary and secondary bootstrapping programs.

The actual file system begins at sector SBLOCK with the super-block that is of size SBLOCKSIZE.
The following structure describes the super-block and is from the file <ufs/ffs/fs.h>:

/*

* Super block for an FFS filesystem.

*/
struct fs{

int32_t
int32_t
int32_t
int32_t
int32_t
int32_t
int32_t
int32_t

fs firstfield; * historic filesystem linked list, */
fs unused 1; /* used for incore super blocks */

fs shblkno; I* offset of super-block in filesys*/
fs_cblkno; [* offset of cyl-block in filesys*/

fs iblkno; * offset of inode-blocksin filesys */
fs_dblkno; [* offset of first data after cg */

fs old cgoffset; /* cylinder group offset in cylinder */
fs old_cgmask; /* usedto calc modfs ntrak */

int32_t fs old_time; /* last time written */

int32_t

fs old _size; /* number of blocksin fs*/

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

FS(5) FreeBSD File Formats Manual FS(5)

int32_ t fs old dsize; /* number of datablocksinfs*/

int32_ t fs ncg; /* number of cylinder groups*/
int32_t fs bsize; [* size of basic blocksinfs*/
int32_ t fs fsize, [* size of frag blocksin fs*/

int32_t fs frag; /* number of fragsin ablock infs*/

* these are configuration parameters */
int32_t fs minfree; /* minimum percentage of free blocks */
int32_t fs old_rotdelay; /* num of msfor optimal next block */
int32_ t fs old rps; /* disk revolutions per second */
* these fields can be computed from the others */
int32_ t fs bmask; * “*blkoff'’ calc of blk offsets*/
int32_ t fs fmask; [* “*fragoff’’ calc of frag offsets*/
int32_t fs_bshift; /* “*Iblkno’’ calc of logical blkno */
int32_t fs fshift; /* **numfrags”’ calc number of frags*/
* these are configuration parameters */
int32_t fs maxcontig; /* max number of contiguous blks*/
int32_t fs maxbpg; /* max number of blks per cyl group */
* these fields can be computed from the others */
int32_ t fs fragshift; /* block to frag shift */
int32_t fs fsbtodb; /* fsbtodb and dbtofsb shift constant */
int32 t fs shsize; /* actua size of super block */
int32_t fs sparel[2]; /* oldfs _csmask */
* old fs_csshift */
int32_t fs nindir; /* value of NINDIR */
int32_t fs_inopb; /* value of INOPB */
int32_ t fs old nspf; /* value of NSPF */
* yet another configuration parameter */
int32_t fs optim; /* optimization preference, see below */
int32_t fs old npsect; /* # sectors/track including spares™*/
int32_t fs old_interleave; /* hardware sector interleave */
int32_t fs old_trackskew; /* sector O skew, per track */
int32_t fs.id2]; /* unique filesystemid */
* sizes determined by number of cylinder groups and their sizes*/
int32_ t fs old_csaddr; * blk addr of cyl grp summary area*/
int32_ t fs cssize; * size of cyl grp summary area*/
int32_ t fs cgsize, /* cylinder group size*/
int32 t fs spare2; [* old fs_ntrak */
int32_t fs old_nsect; /* sectors per track */
int32_t fs old_spc; /* sectors per cylinder */
int32_t fs old_ncyl; /* cylindersin filesystem */

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

FS(5) FreeBSD File Formats Manual FS(5)

int32_ t fs old cpg; /* cylinders per group */
int32_t fs ipg; I* inodes per group */
int32 t fs fpg; I* blocks per group * fs_frag */
[* this data must be re-computed after crashes */
struct csumfs_old_cstotal; /* cylinder summary information */
[* these fields are cleared at mount time */
int8 t fs fmod,; * super block modified flag */
int8_t fs clean; I* filesystemis clean flag */
int8 t fs ronly; /* mounted read-only flag */
int8 t fs old flags, /* oldFS_flags*/
u char fs fsmntfMAXMNTLEN]; /* name mounted on */
u char fs volnamgMAXVOLLEN]; /* volume name */
uint64 _tfs swuid; [* system-wide uid */
int32_t fs pad; /* dueto alignment of fs_swuid */
/* these fields retain the current block alocation info */
int32_t fs cgrotor; /* last cg searched */
void *fs ocsp[NOCSPTRS]; /* padding; waslist of fs_csbuffers*/
uint8 t*fs contigdirs;, /* # of contiguously allocated dirs*/
struct csum*fs csp; /* cg summary info buffer for fs_cs*/
int32_t *fs maxcluster; /* max cluster in each cyl group */
uint *fs active; /* used by snapshotsto track fs*/
int32_t fs old_cpc; /* cyl per cyclein postbl */
int32_t fs maxbsize; /* maximum blocking factor permitted */
inté4 t fs unrefs; /* number of unreferenced inodes */
inté4_ t fs sparecon64[16]; /* old rotation block list head */
inté4 t fs sblockloc; /* byte offset of standard superblock */
struct csum _total fs cstotal; /* cylinder summary information */
ufs time tfs time; [* last time written */
inté4 t fs size; /* number of blocksin fs*/
inté4 t fs dsize, /* number of data blocksin fs*/
ufs2_daddr_tfs csaddr; /* blk addr of cyl grp summary area*/
inté4 t fs pendingblocks; /* blocksin process of being freed */
int32_t fs pendinginodes; /* inodes in process of being freed */
int32_t fs snapinum[FSMAXSNAP]; /* list of snapshot inode numbers*/
int32_ t fs avgfilesize; /* expected average file size */
int32_t fs avgfpdir; /* expected # of files per directory */
int32 t fs save cgsize; /* saverea cg sizeto usefs bsize*/
int32_t fs_sparecon32[26]; /* reserved for future constants */
int32_t fs flags; /* see FS_flags below */
int32_t fs_contigsumsize; /* size of cluster summary array */

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

FS(5) FreeBSD File Formats Manual FS(5)

int32_t fs_maxsymlinklen; /* max length of aninternal symlink */
int32_ t fs old_inodefmt; /* format of on-disk inodes */
uinté4 tfs maxfilesize; /* maximum representable file size*/
inté4 t fs gbmask; /* ~fs_bmask for use with 64-bit size */
inté4 t fs _gfmask; /* ~fs_fmask for use with 64-bit size */
int32_t fs dtate; [* validate fs_clean field */
int32_t fs old_postblformat; /* format of positional layout tables*/
int32_t fs old_nrpos, /* number of rotational positions */
int32_ t fs spare5[2]; /* old fs_postbloff */

* old fs_rotbloff */
int32_ t fs magic; /* magic number */

H

/*

* Filesystem identification

*/

#define FS_UFS1 MAGIC0x011954 /* UFSL fast filesystem magic number */
#define FS_UFS2 MAGIC 0x19540119 /* UFS2 fast filesystem magic number */
#define FS_OKAY 0x7¢269d38 /* superblock checksum */
#define FS_42INODEFMT -1 /* 4.2BSD inode format */

#define FS 44INODEFMT 2 /* 4.4BSD inode format */

/*

* Preference for optimization.

*/

#define FS_OPTTIME 0 /* minimize allocation time */
#define FS_OPTSPACE 1 /* minimize disk fragmentation */

Each disk drive contains some number of file systems. A file system consists of a number of cylinder
groups. Each cylinder group has inodes and data.

A file system is described by its super-block, which in turn describes the cylinder groups. The super-
block is critical dataand is replicated in each cylinder group to protect against catastrophic loss. Thisis
done at file system creation time and the critical super-block data does not change, so the copies need
not be referenced further unless disaster strikes.

Addresses stored in inodes are capable of addressing fragments of ‘blocks'. File system blocks of at

most size MAXBSIZE can be optionally broken into 2, 4, or 8 pieces, each of which is addressable;
these pieces may be DEV_BSIZE, or some multiple of aDEV_BSIZE unit.

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

FS(5) FreeBSD File Formats Manual FS(5)

Largefiles consist of exclusively large datablocks. To avoid undue wasted disk space, the last data
block of asmall fileisalocated as only as many fragments of alarge block as are necessary. Thefile
system format retains only a single pointer to such afragment, which is a piece of asingle large block
that has been divided. The size of such afragment is determinable from information in the inode, using
the blksize(fs, ip, Ibn) macro.

The file system records space availability at the fragment level; to determine block availability, aligned
fragments are examined.

Theroot inode is the root of the file system. Inode 0 cannot be used for normal purposes and historically
bad blocks were linked to inode 1, thus the root inode is 2 (inode 1 is no longer used for this purpose,
however numerous dump tapes make this assumption, so we are stuck with it).

The fs_minfree element gives the minimum acceptable percentage of file system blocks that may be
free. If the fredlist drops below thislevel only the super-user may continue to allocate blocks. The
fs_minfree element may be set to O if no reserve of free blocks is deemed necessary, however severe
performance degradations will be observed if the file system isrun at greater than 90% full; thus the
default value of fs_minfreeis 8%.

Empirically the best trade-off between block fragmentation and overall disk utilization at aloading of
90% comes with afragmentation of 8, thus the default fragment size is an eighth of the block size.

The element fs_optim specifies whether the file system should try to minimize the time spent allocating
blocks, or if it should attempt to minimize the space fragmentation on the disk. If the value of
fs_minfree (see above) isless than 8%, then the file system defaults to optimizing for space to avoid
running out of full sized blocks. If the value of minfreeis greater than or equal to 8%, fragmentation is
unlikely to be problematical, and the file system defaults to optimizing for time.

Cylinder group related limits: Each cylinder keeps track of the availability of blocks at different
rotational positions, so that sequential blocks can be laid out with minimum rotational latency. With the
default of 8 distinguished rotational positions, the resolution of the summary information is 2msfor a
typical 3600 rpm drive.

The element fs_old_rotdelay gives the minimum number of milliseconds to initiate another disk transfer
on the same cylinder. Itisused in determining the rotationally optimal layout for disk blocks within a
file; the default value for fs_old rotdelay is 2ms.

Each file system has a statically allocated number of inodes. Aninodeisalocated for each NBPI bytes
of disk space. Theinode allocation strategy is extremely conservative.

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

FS(5) FreeBSD File Formats Manual FS(5)

MINBSIZE isthe smallest allowable block size. With aMINBSIZE of 4096 it is possible to create files
of size 2"32 with only two levels of indirection. MINBSIZE must be big enough to hold a cylinder
group block, thus changes to (struct cg) must keep its size within MINBSIZE. Note that super-blocks
are never more than size SBLOCKSIZE.

The path name on which the file system is mounted is maintained in fs_fsmnt. MAXMNTLEN defines
the amount of space allocated in the super-block for this name. The limit on the amount of summary
information per file systemis defined by MAXCSBUFS. For a4096 byte block size, it is currently
parameterized for a maximum of two million cylinders.

Per cylinder group information is summarized in blocks allocated from the first cylinder group’ s data
blocks. These blocksareread in from fs_csaddr (sizefs cssize) in addition to the super-block.

N.B.: sizeof(struct csum) must be a power of two in order for the fs_cs() macro to work.

The Super-block for a file system: The size of the rotational layout tablesis limited by the fact that the
super-block is of size SBLOCKSIZE. The size of thesetablesisinversely proportional to the block size
of the file system. The size of the tablesisincreased when sector sizes are not powers of two, asthis
increases the number of cylindersincluded before the rotational pattern repeats (fs_cpc). The size of the
rotational layout tables is derived from the number of bytes remaining in (struct fs).

The number of blocks of data per cylinder group is limited because cylinder groups are at most one
block. Theinode and free block tables must fit into asingle block after deducting space for the cylinder
group structure (struct cg).

The Inode: Theinode is the focus of al file activity in the UNIX file system. Thereisaunique inode
allocated for each active file, each current directory, each mounted-on file, text file, and theroot. An
inodeis‘named’ by its device/i-number pair. For further information, see theincludefile
<ufg/ufg/inode.h>.

The format of an externa attribute is defined by the extattr structure:

struct extattr {
uint32 t ea length; /* length of this attribute */
uint8 t ea namespace; /* name space of this attribute */
uint8 t ea contentpadlien; /* bytes of padding at end of attribute */
uint8 t ea namelength; [* length of attribute name */
char ea_name1]; [* attribute name (NOT nul-terminated) */

[* padding, if any, to align attribute content to 8 byte boundary */
[* extended attribute content follows */

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

FS(5) FreeBSD File Formats Manual FS(5)

h

Several macros are defined to manipulate these structures. Each macro takes a pointer to an extattr
structure.

EXTATTR_NEXT(eap) Returns a pointer to the next extended attribute following eap.
EXTATTR_CONTENT (eap) Returns a pointer to the extended attribute content referenced by
eap.

EXTATTR _CONTENT_SIZE(eap) Returnsthe size of the extended attribute content referenced by
eap.

The following code identifiesan ACL:

if (eap->ea_namespace == EXTATTR_NAMESPACE_SYSTEM &&
eap->ea_namelength == sizeof(POSIX1E_ACL_ACCESS EXTATTR_NAME) - 1&&
strncmp(eap->ea_name, POSIX1E_ACL_ACCESS EXTATTR_NAME,
sizeof(POSIX1E_ACL_ACCESS EXTATTR_NAME) - 1) == 0) {
aclp= EXTATTR_CONTENT (eap);
acllen = EXTATTR_CONTENT_SIZE(eap);

HISTORY

A super-block structure named filsys appeared in Version 6 AT& T UNIX. Thefile system described in
this manual appeared in 4.2BSD.

FreeBSD 14.0-RELEASE-p11 January 16, 2017 FreeBSD 14.0-RELEASE-p11

