
NAME
integer - Perl pragma to use integer arithmetic instead of floating point

SYNOPSIS
use integer;

$x = 10/3;

$x is now 3, not 3.33333333333333333

DESCRIPTION
This tells the compiler to use integer operations from here to the end of the enclosing BLOCK. On

many machines, this doesn’t matter a great deal for most computations, but on those without floating

point hardware, it can make a big difference in performance.

Note that this only affects how most of the arithmetic and relational operators handle their operands

and results, and not how all numbers everywhere are treated. Specifically, "use integer;" has the effect

that before computing the results of the arithmetic operators (+, -, *, /, %, +=, -=, *=, /=, %=, and unary

minus), the comparison operators (<, <=, >, >=, ==, !=, <=>), and the bitwise operators (|, &, ^, <<, >>,

|=, &=, ^=, <<=, >>=), the operands have their fractional portions truncated (or floored), and the result

will have its fractional portion truncated as well. In addition, the range of operands and results is

restricted to that of familiar two’s complement integers, i.e., -(2**31) .. (2**31-1) on 32-bit

architectures, and -(2**63) .. (2**63-1) on 64-bit architectures. For example, this code

use integer;

$x = 5.8;

$y = 2.5;

$z = 2.7;

$a = 2**31 - 1; # Largest positive integer on 32-bit machines

$, = ", ";

print $x, -$x, $x+$y, $x-$y, $x/$y, $x*$y, $y==$z, $a, $a+1;

will print: 5.8, -5, 7, 3, 2, 10, 1, 2147483647, -2147483648

Note that $x is still printed as having its true non-integer value of 5.8 since it wasn’t operated on. And

note too the wrap-around from the largest positive integer to the largest negative one. Also, arguments

passed to functions and the values returned by them are not affected by "use integer;". E.g.,

srand(1.5);

$, = ", ";

print sin(.5), cos(.5), atan2(1,2), sqrt(2), rand(10);

integer(3) Perl Programmers Reference Guide integer(3)

perl v5.36.3 2023-11-28 integer(3)

will give the same result with or without "use integer;" The power operator "**" is also not affected, so

that 2 ** .5 is always the square root of 2. Now, it so happens that the pre- and post- increment and

decrement operators, ++ and --, are not affected by "use integer;" either. Some may rightly consider

this to be a bug -- but at least it’s a long-standing one.

Finally, "use integer;" also has an additional affect on the bitwise operators. Normally, the operands

and results are treated as unsigned integers, but with "use integer;" the operands and results are signed.

This means, among other things, that ~0 is -1, and -2 & -5 is -6.

Internally, native integer arithmetic (as provided by your C compiler) is used. This means that Perl’s

own semantics for arithmetic operations may not be preserved. One common source of trouble is the

modulus of negative numbers, which Perl does one way, but your hardware may do another.

% perl -le ’print (4 % -3)’

-2

% perl -Minteger -le ’print (4 % -3)’

1

See "Pragmatic Modules" in perlmodlib, "Integer Arithmetic" in perlop

integer(3) Perl Programmers Reference Guide integer(3)

perl v5.36.3 2023-11-28 integer(3)

