
NAME
issetugid - is current process tainted by uid or gid changes

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int

issetugid(void);

DESCRIPTION
The issetugid() system call returns 1 if the process environment or memory address space is considered

"tainted", and returns 0 otherwise.

A process is tainted if it was created as a result of an execve(2) system call which had either of the setuid

or setgid bits set (and extra privileges were given as a result) or if it has changed any of its real, effective

or saved user or group ID’s since it began execution.

This system call exists so that library routines (eg: libc, libtermcap) can reliably determine if it is safe to

use information that was obtained from the user, in particular the results from getenv(3) should be

viewed with suspicion if it is used to control operation.

A "tainted" status is inherited by child processes as a result of the fork(2) system call (or other library

code that calls fork, such as popen(3)).

It is assumed that a program that clears all privileges as it prepares to execute another will also reset the

environment, hence the "tainted" status will not be passed on. This is important for programs such as

su(1) which begin setuid but need to be able to create an untainted process.

ERRORS
The issetugid() system call is always successful, and no return value is reserved to indicate an error.

SEE ALSO
execve(2), fork(2), setegid(2), seteuid(2), setgid(2), setregid(2), setreuid(2), setuid(2)

HISTORY
The issetugid() system call first appeared in OpenBSD 2.0 and was also implemented in FreeBSD 3.0.

ISSETUGID(2) FreeBSD System Calls Manual ISSETUGID(2)

FreeBSD 14.0-RELEASE-p11 August 25, 1996 FreeBSD 14.0-RELEASE-p11


