
NAME
kern_reboot, shutdown_nice - reboot, halt, or power off the system

SYNOPSIS
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/reboot.h>

extern int rebooting;

void

kern_reboot(int howto);

void

shutdown_nice(int howto);

#include <sys/eventhandler.h>

EVENTHANDLER_REGISTER(shutdown_pre_sync, shutdown_fn, private, priority);

EVENTHANDLER_REGISTER(shutdown_post_sync, shutdown_fn, private, priority);

EVENTHANDLER_REGISTER(shutdown_final, shutdown_fn, private, priority);

DESCRIPTION
The kern_reboot() function handles final system shutdown, and either halts, reboots, or powers down the

system. The exact action to be taken is determined by the flags passed in howto.

The relevant flags are:

RB_HALT Halt the system in-place rather than restarting.

RB_POWEROFF Power down the system rather than restarting.

RB_POWERCYCLE Request a power-cycle in addition to restarting.

RB_NOSYNC Do not sync filesystems during shutdown.

RB_DUMP Dump kernel memory during shutdown.

The howto field, and its full list of flags are described in additional detail by reboot(2).

kern_reboot() performs the following actions:

1. Set the rebooting variable to 1, indicating that the reboot process has begun and cannot be

REBOOT(9) FreeBSD Kernel Developer’s Manual REBOOT(9)

FreeBSD 14.0-RELEASE-p11 March 20, 2023 FreeBSD 14.0-RELEASE-p11



stopped.

2. Set the kdb_active variable to 0, indicating that execution has left the kernel debugger, if it

was previously active.

3. Unless the RB_NOSYNC flag is set in howto, sync and unmount the system’s disks by

calling vfs_unmountall(9).

4. If rebooting after a panic (RB_DUMP is set in howto, but RB_HALT is not set), initiate a

system crash dump via doadump().

5. Print a message indicating that the system is about to be halted or rebooted, and a report of

the total system uptime.

6. Execute all registered shutdown hooks. See SHUTDOWN HOOKS below.

7. As a last resort, if none of the shutdown hooks handled the reboot, call the machine-

dependent cpu_reset() function. In the unlikely case that this is not supported, kern_reboot()
will loop forever at the end of the function. This requires a manual reset of the system.

kern_reboot() may be called from a typical kernel execution context, when the system is running

normally. It may also be called as the final step of a kernel panic, or from the kernel debugger.

Therefore, the code in this function is subject to restrictions described by the EXECUTION CONTEXT

section of the panic(9) man page.

The shutdown_nice() function is the intended path for performing a clean reboot or shutdown when the

system is operating under normal conditions. Calling this function will send a signal to the init(8)

process, instructing it to perform a shutdown. When init(8) has cleanly terminated its children, it will

perform the reboot(2) system call, which in turn calls kern_reboot().

If shutdown_nice() is called before the init(8) process has been spawned, or if the system has panicked

or otherwise halted, kern_reboot() will be called directly.

SHUTDOWN HOOKS
The system defines three separate EVENTHANDLER(9) events, which are invoked successively during

the shutdown procedure. These are shutdown_pre_sync, shutdown_post_sync, and shutdown_final.

They will be executed unconditionally in the listed order. Handler functions registered to any of these

events will receive the value of howto as their second argument, which may be used to decide what

action to take.

REBOOT(9) FreeBSD Kernel Developer’s Manual REBOOT(9)

FreeBSD 14.0-RELEASE-p11 March 20, 2023 FreeBSD 14.0-RELEASE-p11



The shutdown_pre_sync event is invoked before syncing filesystems to disk. It enables any action or

state transition that must happen before this point to take place.

The shutdown_post_sync event is invoked at the point immediately after the filesystem sync has

finished. It enables, for example, disk drivers to complete the sync by flushing their cache to disk. Note

that this event still takes place before the optional kernel core dump.

The shutdown_final event is invoked as the very last step of kern_reboot(). Drivers and subsystems

such as acpi(4) can register handlers to this event that will perform the actual reboot, power-off, or halt.

Notably, the shutdown_final event is also the point at which all kernel modules will have their shutdown

(MOD_SHUTDOWN) hooks executed, and when the DEVICE_SHUTDOWN(9) method will be

executed recursively on all devices.

All event handlers, like kern_reboot() itself, may be run in either normal shutdown context or a kernel

panic or debugger context. Handler functions are expected to take care not to trigger recursive panics.

RETURN VALUES
The kern_reboot() function does not return.

The shutdown_nice() function will usually return to its caller, having initiated the asynchronous system

shutdown. It will not return when called from a panic or debugger context, or during early boot.

EXAMPLES
A hypothetical driver, foo(4), defines a shutdown_final event handler that can handle system power-off

by writing to a device register, but it does not handle halt or reset.

void

foo_poweroff_handler(struct void *arg, int howto)

{

struct foo_softc *sc = arg;

uint32_t reg;

if ((howto & RB_POWEROFF) != 0) {

reg = FOO_POWEROFF;

WRITE4(sc, FOO_POWEROFF_REG, reg);

}

}

The handler is then registered in the device attach routine:

REBOOT(9) FreeBSD Kernel Developer’s Manual REBOOT(9)

FreeBSD 14.0-RELEASE-p11 March 20, 2023 FreeBSD 14.0-RELEASE-p11



int

foo_attach(device_t dev)

{

struct foo_softc *sc;

...

/* Pass the device’s software context as the private arg. */

EVENTHANDLER_REGISTER(shutdown_final, foo_poweroff_handler, sc,

SHUTDOWN_PRI_DEFAULT);

...

}

This shutdown_final handler uses the RB_NOSYNC flag to detect that a panic or other unusual

condition has occurred, and returns early:

void

bar_shutdown_final(struct void *arg, int howto)

{

if ((howto & RB_NOSYNC) != 0)

return;

/* Some code that is not panic-safe. */

...

}

SEE ALSO
reboot(2), init(8), DEVICE_SHUTDOWN(9), EVENTHANDLER(9), module(9), panic(9),

vfs_unmountall(9)

REBOOT(9) FreeBSD Kernel Developer’s Manual REBOOT(9)

FreeBSD 14.0-RELEASE-p11 March 20, 2023 FreeBSD 14.0-RELEASE-p11


