
NAME
KMSAN - Kernel Memory SANitizer

SYNOPSIS
The GENERIC-KMSAN kernel configuration can be used to compile a KMSAN-enabled kernel using

GENERIC as a base configuration. Alternately, to compile KMSAN into the kernel, place the following

line in your kernel configuration file:

options KMSAN

#include <sys/msan.h>

void

kmsan_mark(const void *addr, size_t size, uint8_t code);

void

kmsan_orig(const void *addr, size_t size, int type, uintptr_t pc);

void

kmsan_check(const void *addr, size_t size, const char *descr);

void

kmsan_check_bio(const struct bio *, const char *descr);

void

kmsan_check_ccb(const union ccb *, const char *descr);

void

kmsan_check_mbuf(const struct mbuf *, const char *descr);

DESCRIPTION
KMSAN is a subsystem which leverages compiler instrumentation to detect uses of uninitialized

memory in the kernel. Currently it is implemented only on the amd64 platform.

When KMSAN is compiled into the kernel, the compiler is configured to emit function calls preceding

memory accesses. The functions are implemented by the KMSAN runtime component and use hidden,

byte-granular shadow state to determine whether the source operand has been initialized. When

uninitialized memory is used as a source operand in certain operations, such as control flow expressions

or memory accesses, the runtime reports an error. Otherwise, the shadow state is propagated to

destination operand. For example, a variable assignment or a memcpy() call which copies uninitialized

KMSAN(9) FreeBSD Kernel Developer’s Manual KMSAN(9)

FreeBSD 14.0-RELEASE-p11 August 10, 2021 FreeBSD 14.0-RELEASE-p11



memory will cause the destination buffer or variable to be marked uninitialized.

To report an error, the KMSAN runtime will either trigger a kernel panic or print a message to the

console, depending on the value of the debug.kmsan.panic_on_violation sysctl. In both cases, a stack

trace and information about the origin of the uninitialized memory is included.

In addition to compiler-detected uses of uninitialized memory, various kernel I/O "exit points", such as

copyout(9), perform validation of the input’s shadow state and will raise an error if any uninitialized

bytes are detected.

The KMSAN option imposes a significant performance penalty. Kernel code typically runs two or three

times slower, and each byte mapped in the kernel map requires two bytes of shadow state. As a result,

KMSAN should be used only for kernel testing and development. It is not recommended to enable

KMSAN in systems with less than 8GB of physical RAM.

FUNCTIONS
The kmsan_mark() and kmsan_orig() functions update KMSAN shadow state. kmsan_mark() marks an

address range as valid or invalid according to the value of the code parameter. The valid values for this

parameter are KMSAN_STATE_INITED and KMSAN_STATE_UNINIT, which mark the range as

initialized and uninitialized, respectively. For example, when a piece of memory is freed to a kernel

allocator, it will typically have been marked initialized; before the memory is reused for a new

allocation, the allocator should mark it as uninitialized. As another example, writes to host memory

performed by devices, e.g., via DMA, are not intercepted by the sanitizer; to avoid false positives,

drivers should mark device-written memory as initialized. For many drivers this is handled internally by

the busdma(9) subsystem.

The kmsan_orig() function updates "origin" shadow state. In particular, it associates a given

uninitialized buffer with a memory type and code address. This is used by the KMSAN runtime to track

the source of uninitialized memory and is only for debugging purposes. See IMPLEMENTATION

NOTES for more details.

The kmsan_check() function and its sub-typed siblings validate the shadow state of the region(s) of

kernel memory passed as input parameters. If any byte of the input is marked as uninitialized, the

runtime will generate a report. These functions are useful during debugging, as they can be strategically

inserted into code paths to narrow down the source of uninitialized memory. They are also used to

perform validation in various kernel I/O paths, helping ensure that, for example, packets transmitted

over a network do not contain uninitialized kernel memory. kmsan_check() and related functions also

take a descr parameter which is inserted into any reports raised by the check.

IMPLEMENTATION NOTES

KMSAN(9) FreeBSD Kernel Developer’s Manual KMSAN(9)

FreeBSD 14.0-RELEASE-p11 August 10, 2021 FreeBSD 14.0-RELEASE-p11



Shadow Maps
The KMSAN runtime makes use of two shadows of the kernel map. Each address in the kernel map has

a linear mapping to addresses in the two shadows. The first, simply called the shadow map, tracks the

state of the corresponding kernel memory. A non-zero byte in the shadow map indicates that the

corresponding byte of kernel memory is uninitialized. The KMSAN instrumentation automatically

propagates shadow state as the contents of kernel memory are transformed and copied.

The second shadow is called the origin map, and exists only to help debug reports from the sanitizer. To

avoid false positives, KMSAN does not raise reports for certain operations on uninitialized memory,

such as copying or arithmetic. Thus, operations on uninitialized state which raise a report may be far

removed from the source of the bug, complicating debugging. The origin map contains information

which can help pinpoint the root cause of a particular KMSAN report; when generating a report, the

runtime uses state from the origin map to provide extra details.

Unlike the shadow map, the origin map is not byte-granular, but consists of 4-byte "cells". Each cell

describes the corresponding four bytes of mapped kernel memory and holds a type and compressed code

address. When kernel memory is allocated for some purpose, its origin is initialized either by the

compiler instrumentation or by runtime hooks in the allocator. The type indicates the specific allocator,

e.g., uma(9), and the address provides the location in the kernel code where the memory was allocated.

Assembly Code
When KMSAN is configured, the compiler will only emit instrumentation for C code. Files containing

assembly code are left un-instrumented. In some cases this is handled by the sanitizer runtime, which

defines wrappers for subroutines implemented in assembly. These wrappers are referred to as

interceptors and handle updating shadow state to reflect the operations performed by the original

subroutines. In other cases, C code which calls assembly code or is called from assembly code may

need to use kmsan_mark() to manually update shadow state. This is typically only necessary in

machine-dependent code.

Inline assembly is instrumented by the compiler to update shadow state based on the output operands of

the code, and thus does not usually require any special handling to avoid false positives.

Interrupts and Exceptions
In addition to the shadow maps, the sanitizer requires some thread-local storage (TLS) to track

initialization and origin state for function parameters and return values. The sanitizer instrumentation

will automatically fetch, update and verify this state. In particular, this storage block has a layout

defined by the sanitizer ABI.

Most kernel code runs in a context where interrupts or exceptions may redirect the CPU to begin

execution of unrelated code. To ensure that thread-local sanitizer state remains consistent, the runtime

KMSAN(9) FreeBSD Kernel Developer’s Manual KMSAN(9)

FreeBSD 14.0-RELEASE-p11 August 10, 2021 FreeBSD 14.0-RELEASE-p11



maintains a stack of TLS blocks for each thread. When machine-dependent interrupt and exception

handlers begin execution, they push a new entry onto the stack before calling into any C code, and pop

the stack before resuming execution of the interrupted code. These operations are performed by the

kmsan_intr_enter() and kmsan_intr_leave() functions in the sanitizer runtime.

EXAMPLES
The following contrived example demonstrates some of the types of bugs that are automatically detected

by KMSAN:

int

f(size_t osz)

{

struct {

uint32_t bar;

uint16_t baz;

/* A 2-byte hole is here. */

} foo;

char *buf;

size_t sz;

int error;

/*

* This will raise a report since "sz" is uninitialized

* here. If it is initialized, and "osz" was left uninitialized

* by the caller, a report would also be raised.

*/

if (sz < osz)

return (1);

buf = malloc(32, M_TEMP, M_WAITOK);

/*

* This will raise a report since "buf" has not been

* initialized and contains whatever data is left over from the

* previous use of that memory.

*/

for (i = 0; i < 32; i++)

if (buf[i] != ’ ’)

foo.bar++;

foo.baz = 0;

KMSAN(9) FreeBSD Kernel Developer’s Manual KMSAN(9)

FreeBSD 14.0-RELEASE-p11 August 10, 2021 FreeBSD 14.0-RELEASE-p11



/*

* This will raise a report since the pad bytes in "foo" have

* not been initialized, e.g., by memset(), and this call will

* thus copy uninitialized kernel stack memory into userspace.

*/

copyout(&foo, uaddr, sizeof(foo));

/*

* This line itself will not raise a report, but may trigger

* a report in the caller depending on how the return value is

* used.

*/

return (error);

}

SEE ALSO
build(7), busdma(9), copyout(9), KASAN(9), uma(9)

Evgeniy Stepanov and Konstantin Serebryany, "MemorySanitizer: fast detector of uninitialized memory

use in C++", 2015 IEEE/ACM International Symposium on Code Generation and Optimization (CGO),

2015.

HISTORY
KMSAN was ported from NetBSD and first appeared in FreeBSD 14.0.

BUGS
Accesses to kernel memory outside of the kernel map are ignored by the KMSAN runtime. In

particular, memory accesses via the direct map are not validated. When memory is copied from outside

the kernel map into the kernel map, that region of the kernel map is marked as initialized. When

KMSAN is configured, kernel memory allocators are configured to use the kernel map, and filesystems

are configured to always map data buffers into the kernel map, so usage of the direct map is minimized.

However, some uses of the direct map remain. This is a conservative policy which aims to avoid false

positives, but it will mask bug in some kernel subsystems.

On amd64, global variables and the physical page array vm_page_array are not sanitized. This is

intentional, as it reduces memory usage by avoiding creating shadows of large regions of the kernel

map. However, this can allow bugs to go undetected by KMSAN.

Some kernel memory allocators provide type-stable objects, and code which uses them frequently

depends on object data being preserved across allocations. Such allocations cannot be sanitized by

KMSAN(9) FreeBSD Kernel Developer’s Manual KMSAN(9)

FreeBSD 14.0-RELEASE-p11 August 10, 2021 FreeBSD 14.0-RELEASE-p11



KMSAN. However, in some cases it may be possible to use kmsan_mark() to manually annotate fields

which are known to contain invalid data upon allocation.

KMSAN(9) FreeBSD Kernel Developer’s Manual KMSAN(9)

FreeBSD 14.0-RELEASE-p11 August 10, 2021 FreeBSD 14.0-RELEASE-p11


