
NAME
kqueue_add_filteropts, kqueue_del_filteropts, kqfd_register, knote_fdclose, knlist_init, knlist_init_mtx,

knlist_add, knlist_remove, knlist_remove_inevent, knlist_empty, knlist_clear, knlist_delete,

knlist_destroy, KNOTE_LOCKED, KNOTE_UNLOCKED - event delivery subsystem

SYNOPSIS
#include <sys/event.h>

int

kqueue_add_filteropts(int filt, struct filterops *filtops);

int

kqueue_del_filteropts(int filt);

int

kqfd_register(int fd, struct kevent *kev, struct thread *td, int waitok);

void

knote_fdclose(struct thread *td, int fd);

void

knlist_init(struct knlist *knl, void *lock, void (*kl_lock)(void *), void (*kl_unlock)(void *),

int (*kl_locked)(void *));

void

knlist_init_mtx(struct knlist *knl, struct mtx *lock);

void

knlist_add(struct knlist *knl, struct knote *kn, int islocked);

void

knlist_remove(struct knlist *knl, struct knote *kn, int islocked);

void

knlist_remove_inevent(struct knlist *knl, struct knote *kn);

int

knlist_empty(struct knlist *knl);

void

KQUEUE(9) FreeBSD Kernel Developer’s Manual KQUEUE(9)

FreeBSD 14.2-RELEASE December 18, 2023 FreeBSD 14.2-RELEASE



knlist_clear(struct knlist *knl, int islocked);

void

knlist_delete(struct knlist *knl, struct thread *td, int islocked);

void

knlist_destroy(struct knlist *knl);

void

KNOTE_LOCKED(struct knlist *knl, long hint);

void

KNOTE_UNLOCKED(struct knlist *knl, long hint);

DESCRIPTION
The functions kqueue_add_filteropts() and kqueue_del_filteropts() allow for the addition and removal of

a filter type. The filter is statically defined by the EVFILT_* macros. The function

kqueue_add_filteropts() will make filt available. The struct filterops has the following members:

f_isfd If f_isfd is set, ident in struct kevent is taken to be a file descriptor. In this case, the knote

passed into f_attach will have the kn_fp member initialized to the struct file * that represents

the file descriptor.

f_attach The f_attach function will be called when attaching a knote to the object. The method should

call knlist_add() to add the knote to the list that was initialized with knlist_init(). The call to

knlist_add() is only necessary if the object can have multiple knotes associated with it. If there

is no knlist to call knlist_add() with, the function f_attach must clear the KN_DETACHED bit

of kn_status in the knote. The function shall return 0 on success, or appropriate error for the

failure, such as when the object is being destroyed, or does not exist. During f_attach, it is

valid to change the kn_fop pointer to a different pointer. This will change the f_event and

f_detach functions called when processing the knote.

f_detach

The f_detach function will be called to detach the knote if the knote has not already been

detached by a call to knlist_remove(), knlist_remove_inevent() or knlist_delete(). The list lock

will not be held when this function is called.

f_event The f_event function will be called to update the status of the knote. If the function returns 0, it

will be assumed that the object is not ready (or no longer ready) to be woken up. The hint

argument will be 0 when scanning knotes to see which are triggered. Otherwise, the hint

KQUEUE(9) FreeBSD Kernel Developer’s Manual KQUEUE(9)

FreeBSD 14.2-RELEASE December 18, 2023 FreeBSD 14.2-RELEASE



argument will be the value passed to either KNOTE_LOCKED or KNOTE_UNLOCKED.

The kn_data value should be updated as necessary to reflect the current value, such as number

of bytes available for reading, or buffer space available for writing. If the note needs to be

removed, knlist_remove_inevent() must be called. The function knlist_remove_inevent() will

remove the note from the list, the f_detach function will not be called and the knote will not be

returned as an event.

Locks must not be acquired in f_event. If a lock is required in f_event, it must be obtained in

the kl_lock function of the knlist that the knote was added to.

The function kqfd_register() will register the kevent on the kqueue file descriptor fd. If it is safe to

sleep, waitok should be set.

The function knote_fdclose() is used to delete all knotes associated with fd. Once returned, there will no

longer be any knotes associated with the fd. The knotes removed will never be returned from a

kevent(2) call, so if userland uses the knote to track resources, they will be leaked. The

FILEDESC_LOCK() lock must be held over the call to knote_fdclose() so that file descriptors cannot be

added or removed.

The knlist_*() family of functions are for managing knotes associated with an object. A knlist is not

required, but is commonly used. If used, the knlist must be initialized with either knlist_init() or

knlist_init_mtx(). The knlist structure may be embedded into the object structure. The lock will be held

over f_event calls.

For the knlist_init() function, if lock is NULL, a shared global lock will be used and the remaining

arguments must be NULL. The function pointers kl_lock, kl_unlock and kl_locked will be used to

manipulate the argument lock. If any of the function pointers are NULL, a function operating on

MTX_DEF style mutex(9) locks will be used instead.

The function knlist_init_mtx() may be used to initialize a knlist when lock is a MTX_DEF style

mutex(9) lock.

The function knlist_empty() returns true when there are no knotes on the list. The function requires that

the lock be held when called.

The function knlist_clear() removes all knotes from the list. The islocked argument declares if the lock

has been acquired. All knotes will have EV_ONESHOT set so that the knote will be returned and

removed during the next scan. The f_detach function will be called when the knote is deleted during the

next scan.

KQUEUE(9) FreeBSD Kernel Developer’s Manual KQUEUE(9)

FreeBSD 14.2-RELEASE December 18, 2023 FreeBSD 14.2-RELEASE



The function knlist_delete() removes and deletes all knotes on the list. The function f_detach will not be

called, and the knote will not be returned on the next scan. Using this function could leak userland

resources if a process uses the knote to track resources.

Both the knlist_clear() and knlist_delete() functions may sleep. They also may release the lock to wait

for other knotes to drain.

The knlist_destroy() function is used to destroy a knlist. There must be no knotes associated with the

knlist (knlist_empty() returns true) and no more knotes may be attached to the object. A knlist may be

emptied by calling knlist_clear() or knlist_delete().

The macros KNOTE_LOCKED() and KNOTE_UNLOCKED() are used to notify knotes about events

associated with the object. It will iterate over all knotes on the list calling the f_event function

associated with the knote. The macro KNOTE_LOCKED() must be used if the lock associated with the

knl is held. The function KNOTE_UNLOCKED() will acquire the lock before iterating over the list of

knotes.

RETURN VALUES
The function kqueue_add_filteropts() will return zero on success, EINVAL in the case of an invalid filt,

or EEXIST if the filter has already been installed.

The function kqueue_del_filteropts() will return zero on success, EINVAL in the case of an invalid filt,

or EBUSY if the filter is still in use.

The function kqfd_register() will return zero on success, EBADF if the file descriptor is not a kqueue, or

any of the possible values returned by kevent(2).

SEE ALSO
kevent(2), kqueue(2)

AUTHORS
This manual page was written by John-Mark Gurney <jmg@FreeBSD.org>.

KQUEUE(9) FreeBSD Kernel Developer’s Manual KQUEUE(9)

FreeBSD 14.2-RELEASE December 18, 2023 FreeBSD 14.2-RELEASE


