
NAME
kobj - a kernel object system for FreeBSD

SYNOPSIS
#include <sys/param.h>
#include <sys/kobj.h>

void

kobj_class_compile(kobj_class_t cls);

void

kobj_class_compile_static(kobj_class_t cls, kobj_ops_t ops);

void

kobj_class_free(kobj_class_t cls);

kobj_t

kobj_create(kobj_class_t cls, struct malloc_type *mtype, int mflags);

void

kobj_init(kobj_t obj, kobj_class_t cls);

void

kobj_init_static(kobj_t obj, kobj_class_t cls);

void

kobj_delete(kobj_t obj, struct malloc_type *mtype);

DEFINE_CLASS(name, kobj_method_t *methods, size_t size);

DESCRIPTION
The kernel object system implements an object-oriented programming system in the FreeBSD kernel.

The system is based around the concepts of interfaces, which are descriptions of sets of methods;

classes, which are lists of functions implementing certain methods from those interfaces; and objects,

which combine a class with a structure in memory.

Methods are called using a dynamic method dispatching algorithm which is designed to allow new

interfaces and classes to be introduced into the system at runtime. The method dispatch algorithm is

designed to be both fast and robust and is only slightly more expensive than a direct function call,

making kernel objects suitable for performance-critical algorithms.

KOBJ(9) FreeBSD Kernel Developer’s Manual KOBJ(9)

FreeBSD 14.0-RELEASE-p11 November 14, 2011 FreeBSD 14.0-RELEASE-p11



Suitable uses for kernel objects are any algorithms which need some kind of polymorphism (i.e., many

different objects which can be treated in a uniform way). The common behaviour of the objects is

described by a suitable interface and each different type of object is implemented by a suitable class.

The simplest way to create a kernel object is to call kobj_create() with a suitable class, malloc type and

flags (see malloc(9) for a description of the malloc type and flags). This will allocate memory for the

object based on the object size specified by the class and initialise it by zeroing the memory and

installing a pointer to the class’ method dispatch table. Objects created in this way should be freed by

calling kobj_delete().

Clients which would like to manage the allocation of memory themselves should call kobj_init() or

kobj_init_static() with a pointer to the memory for the object and the class which implements it. It is

also possible to use kobj_init() and kobj_init_static() to change the class for an object. This should be

done with care as the classes must agree on the layout of the object. The device framework uses this

feature to associate drivers with devices.

The functions kobj_class_compile(), kobj_class_compile_static() and kobj_class_free() are used to

process a class description to make method dispatching efficient. A client should not normally need to

call these since a class will automatically be compiled the first time it is used. If a class is to be used

before malloc(9) and mutex(9) are initialised, then kobj_class_compile_static() should be called with the

class and a pointer to a statically allocated kobj_ops structure before the class is used to initialise any

objects. In that case, also kobj_init_static() should be used instead of kobj_init().

To define a class, first define a simple array of kobj_method_t. Each method which the class

implements should be entered into the table using the macro KOBJMETHOD() which takes the name of

the method (including its interface) and a pointer to a function which implements it. The table should be

terminated with two zeros. The macro DEFINE_CLASS() can then be used to initialise a kobj_class_t

structure. The size argument to DEFINE_CLASS() specifies how much memory should be allocated for

each object.

HISTORY
Some of the concepts for this interface appeared in the device framework used for the alpha port of

FreeBSD 3.0 and more widely in FreeBSD 4.0.

AUTHORS
This manual page was written by Doug Rabson.

KOBJ(9) FreeBSD Kernel Developer’s Manual KOBJ(9)

FreeBSD 14.0-RELEASE-p11 November 14, 2011 FreeBSD 14.0-RELEASE-p11


