
NAME
kproc_start, kproc_shutdown, kproc_create, kproc_exit, kproc_resume, kproc_suspend,

kproc_suspend_check - kernel processes

SYNOPSIS
#include <sys/kthread.h>

void

kproc_start(const void *udata);

void

kproc_shutdown(void *arg, int howto);

int

kproc_create(void (*func)(void *), void *arg, struct proc **newpp, int flags, int pages, const char *fmt,

...);

void

kproc_exit(int ecode);

int

kproc_resume(struct proc *p);

int

kproc_suspend(struct proc *p, int timo);

void

kproc_suspend_check(struct proc *p);

int

kproc_kthread_add(void (*func)(void *), void *arg, struct proc **procptr, struct thread **tdptr, int flags,

int pages, char * procname, const char *fmt, ...);

DESCRIPTION
In FreeBSD 8.0, the kthread*(9) family of functions was renamed to be the kproc*(9) family of

functions, as they were misnamed and actually produced kernel processes. A new family of different

kthread_*(9) functions was added to produce real kernel threads. See the kthread(9) man page for more

information on those calls. Also note that the kproc_kthread_add(9) function appears in both pages as

its functionality is split.

KPROC(9) FreeBSD Kernel Developer’s Manual KPROC(9)

FreeBSD 14.0-RELEASE-p11 October 19, 2007 FreeBSD 14.0-RELEASE-p11

The function kproc_start() is used to start "internal" daemons such as bufdaemon, pagedaemon,

vmdaemon, and the syncer and is intended to be called from SYSINIT(9). The udata argument is

actually a pointer to a struct kproc_desc which describes the kernel process that should be created:

struct kproc_desc {

char *arg0;

void (*func)(void);

struct proc **global_procpp;

};

The structure members are used by kproc_start() as follows:

arg0 String to be used for the name of the process. This string will be copied into the

p_comm member of the new process’ struct proc.

func The main function for this kernel process to run.

global_procpp A pointer to a struct proc pointer that should be updated to point to the newly

created process’ process structure. If this variable is NULL, then it is ignored.

The kproc_create() function is used to create a kernel process. The new process shares its address space

with process 0, the swapper process, and runs in kernel mode only. The func argument specifies the

function that the process should execute. The arg argument is an arbitrary pointer that is passed in as the

only argument to func when it is called by the new process. The newpp pointer points to a struct proc

pointer that is to be updated to point to the newly created process. If this argument is NULL, then it is

ignored. The flags argument specifies a set of flags as described in rfork(2). The pages argument

specifies the size of the new kernel process’s stack in pages. If 0 is used, the default kernel stack size is

allocated. The rest of the arguments form a printf(9) argument list that is used to build the name of the

new process and is stored in the p_comm member of the new process’s struct proc.

The kproc_exit() function is used to terminate kernel processes. It should be called by the main function

of the kernel process rather than letting the main function return to its caller. The ecode argument

specifies the exit status of the process. While exiting, the function exit1(9) will initiate a call to

wakeup(9) on the process handle.

The kproc_resume(), kproc_suspend(), and kproc_suspend_check() functions are used to suspend and

resume a kernel process. During the main loop of its execution, a kernel process that wishes to allow

itself to be suspended should call kproc_suspend_check() passing in curproc as the only argument. This

function checks to see if the kernel process has been asked to suspend. If it has, it will tsleep(9) until it

is told to resume. Once it has been told to resume it will return allowing execution of the kernel process

KPROC(9) FreeBSD Kernel Developer’s Manual KPROC(9)

FreeBSD 14.0-RELEASE-p11 October 19, 2007 FreeBSD 14.0-RELEASE-p11

to continue. The other two functions are used to notify a kernel process of a suspend or resume request.

The p argument points to the struct proc of the kernel process to suspend or resume. For

kproc_suspend(), the timo argument specifies a timeout to wait for the kernel process to acknowledge

the suspend request and suspend itself.

The kproc_shutdown() function is meant to be registered as a shutdown event for kernel processes that

need to be suspended voluntarily during system shutdown so as not to interfere with system shutdown

activities. The actual suspension of the kernel process is done with kproc_suspend().

The kproc_kthread_add() function is much like the kproc_create() function above except that if the

kproc already exists, then only a new thread (see kthread(9)) is created on the existing process. The

func argument specifies the function that the process should execute. The arg argument is an arbitrary

pointer that is passed in as the only argument to func when it is called by the new process. The procptr

pointer points to a struct proc pointer that is the location to be updated with the new proc pointer if a

new process is created, or if not NULL, must contain the process pointer for the already existing

process. If this argument points to NULL, then a new process is created and the field updated. If not

NULL, the tdptr pointer points to a struct thread pointer that is the location to be updated with the new

thread pointer. The flags argument specifies a set of flags as described in rfork(2). The pages argument

specifies the size of the new kernel thread’s stack in pages. If 0 is used, the default kernel stack size is

allocated. The procname argument is the name the new process should be given if it needs to be created.

It is NOT a printf style format specifier but a simple string. The rest of the arguments form a printf(9)

argument list that is used to build the name of the new thread and is stored in the td_name member of the

new thread’s struct thread.

RETURN VALUES
The kproc_create(), kproc_resume(), and kproc_suspend() functions return zero on success and non-zero

on failure.

EXAMPLES
This example demonstrates the use of a struct kproc_desc and the functions kproc_start(),
kproc_shutdown(), and kproc_suspend_check() to run the bufdaemon process.

static struct proc *bufdaemonproc;

static struct kproc_desc buf_kp = {

"bufdaemon",

buf_daemon,

&bufdaemonproc

};

SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kproc_start,

KPROC(9) FreeBSD Kernel Developer’s Manual KPROC(9)

FreeBSD 14.0-RELEASE-p11 October 19, 2007 FreeBSD 14.0-RELEASE-p11

&buf_kp)

static void

buf_daemon()

{

...

/*

* This process needs to be suspended prior to shutdown sync.

*/

EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown,

bufdaemonproc, SHUTDOWN_PRI_LAST);

...

for (;;) {

kproc_suspend_check(bufdaemonproc);

...

}

}

ERRORS
The kproc_resume() and kproc_suspend() functions will fail if:

[EINVAL] The p argument does not reference a kernel process.

The kproc_create() function will fail if:

[EAGAIN] The system-imposed limit on the total number of processes under execution

would be exceeded. The limit is given by the sysctl(3) MIB variable

KERN_MAXPROC.

[EINVAL] The RFCFDG flag was specified in the flags parameter.

SEE ALSO
rfork(2), exit1(9), kthread(9), SYSINIT(9), wakeup(9)

HISTORY
The kproc_start() function first appeared in FreeBSD 2.2. The kproc_shutdown(), kproc_create(),

kproc_exit(), kproc_resume(), kproc_suspend(), and kproc_suspend_check() functions were introduced

in FreeBSD 4.0. Prior to FreeBSD 5.0, the kproc_shutdown(), kproc_resume(), kproc_suspend(), and

kproc_suspend_check() functions were named shutdown_kproc(), resume_kproc(), shutdown_kproc(),

and kproc_suspend_loop(), respectively. Originally they had the names kthread_*() but were changed to

KPROC(9) FreeBSD Kernel Developer’s Manual KPROC(9)

FreeBSD 14.0-RELEASE-p11 October 19, 2007 FreeBSD 14.0-RELEASE-p11

kproc_*() when real kthreads became available.

KPROC(9) FreeBSD Kernel Developer’s Manual KPROC(9)

FreeBSD 14.0-RELEASE-p11 October 19, 2007 FreeBSD 14.0-RELEASE-p11

