
NAME
kthread_start, kthread_shutdown, kthread_add, kthread_exit, kthread_resume, kthread_suspend,

kthread_suspend_check - kernel threads

SYNOPSIS
#include <sys/kthread.h>

void

kthread_start(const void *udata);

void

kthread_shutdown(void *arg, int howto);

void

kthread_exit(void);

int

kthread_resume(struct thread *td);

int

kthread_suspend(struct thread *td, int timo);

void

kthread_suspend_check(void);

#include <sys/unistd.h>

int

kthread_add(void (*func)(void *), void *arg, struct proc *procp, struct thread **newtdpp, int flags,

int pages, const char *fmt, ...);

int

kproc_kthread_add(void (*func)(void *), void *arg, struct proc **procptr, struct thread **tdptr, int flags,

int pages, char * procname, const char *fmt, ...);

DESCRIPTION
In FreeBSD 8.0, the older family of kthread_*(9) functions was renamed to be the kproc_*(9) family of

functions, as they were previously misnamed and actually produced kernel processes. This new family

of kthread_*(9) functions was added to produce real kernel threads. See the kproc(9) man page for more

information on the renamed calls. Also note that the kproc_kthread_add(9) function appears in both

KTHREAD(9) FreeBSD Kernel Developer’s Manual KTHREAD(9)

FreeBSD 14.2-RELEASE July 15, 2014 FreeBSD 14.2-RELEASE

pages as its functionality is split.

The function kthread_start() is used to start "internal" daemons such as bufdaemon, pagedaemon,

vmdaemon, and the syncer and is intended to be called from SYSINIT(9). The udata argument is

actually a pointer to a struct kthread_desc which describes the kernel thread that should be created:

struct kthread_desc {

char *arg0;

void (*func)(void);

struct thread **global_threadpp;

};

The structure members are used by kthread_start() as follows:

arg0 String to be used for the name of the thread. This string will be copied into the

td_name member of the new threads’ struct thread.

func The main function for this kernel thread to run.

global_threadpp A pointer to a struct thread pointer that should be updated to point to the newly

created thread’s thread structure. If this variable is NULL, then it is ignored.

The thread will be a subthread of proc0 (PID 0).

The kthread_add() function is used to create a kernel thread. The new thread runs in kernel mode only.

It is added to the process specified by the procp argument, or if that is NULL, to proc0. The func

argument specifies the function that the thread should execute. The arg argument is an arbitrary pointer

that is passed in as the only argument to func when it is called by the new thread. The newtdpp pointer

points to a struct thread pointer that is to be updated to point to the newly created thread. If this

argument is NULL, then it is ignored. The flags argument may be set to RFSTOPPED to leave the

thread in a stopped state. The caller must call sched_add() to start the thread. The pages argument

specifies the size of the new kernel thread’s stack in pages. If 0 is used, the default kernel stack size is

allocated. The rest of the arguments form a printf(9) argument list that is used to build the name of the

new thread and is stored in the td_name member of the new thread’s struct thread.

The kproc_kthread_add() function is much like the kthread_add() function above except that if the kproc

does not already exist, it is created. This function is better documented in the kproc(9) manual page.

The kthread_exit() function is used to terminate kernel threads. It should be called by the main function

of the kernel thread rather than letting the main function return to its caller.

KTHREAD(9) FreeBSD Kernel Developer’s Manual KTHREAD(9)

FreeBSD 14.2-RELEASE July 15, 2014 FreeBSD 14.2-RELEASE

The kthread_resume(), kthread_suspend(), and kthread_suspend_check() functions are used to suspend

and resume a kernel thread. During the main loop of its execution, a kernel thread that wishes to allow

itself to be suspended should call kthread_suspend_check() in order to check if the it has been asked to

suspend. If it has, it will msleep(9) until it is told to resume. Once it has been told to resume it will

return allowing execution of the kernel thread to continue. The other two functions are used to notify a

kernel thread of a suspend or resume request. The td argument points to the struct thread of the kernel

thread to suspend or resume. For kthread_suspend(), the timo argument specifies a timeout to wait for

the kernel thread to acknowledge the suspend request and suspend itself.

The kthread_shutdown() function is meant to be registered as a shutdown event for kernel threads that

need to be suspended voluntarily during system shutdown so as not to interfere with system shutdown

activities. The actual suspension of the kernel thread is done with kthread_suspend().

RETURN VALUES
The kthread_add(), kthread_resume(), and kthread_suspend() functions return zero on success and non-

zero on failure.

EXAMPLES
This example demonstrates the use of a struct kthread_desc and the functions kthread_start(),
kthread_shutdown(), and kthread_suspend_check() to run the bufdaemon process.

static struct thread *bufdaemonthread;

static struct kthread_desc buf_kp = {

"bufdaemon",

buf_daemon,

&bufdaemonthread

};

SYSINIT(bufdaemon, SI_SUB_KTHREAD_BUF, SI_ORDER_FIRST, kthread_start,

&buf_kp)

static void

buf_daemon()

{

...

/*

* This process needs to be suspended prior to shutdown sync.

*/

EVENTHANDLER_REGISTER(shutdown_pre_sync, kthread_shutdown,

bufdaemonthread, SHUTDOWN_PRI_LAST);

KTHREAD(9) FreeBSD Kernel Developer’s Manual KTHREAD(9)

FreeBSD 14.2-RELEASE July 15, 2014 FreeBSD 14.2-RELEASE

...

for (;;) {

kthread_suspend_check();

...

}

}

ERRORS
The kthread_resume() and kthread_suspend() functions will fail if:

[EINVAL] The td argument does not reference a kernel thread.

The kthread_add() function will fail if:

[ENOMEM] Memory for a thread’s stack could not be allocated.

SEE ALSO
kproc(9), SYSINIT(9), wakeup(9)

HISTORY
The kthread_start() function first appeared in FreeBSD 2.2 where it created a whole process. It was

converted to create threads in FreeBSD 8.0. The kthread_shutdown(), kthread_exit(), kthread_resume(),

kthread_suspend(), and kthread_suspend_check() functions were introduced in FreeBSD 4.0 and were

converted to threads in FreeBSD 8.0. The kthread_create() call was renamed to kthread_add() in

FreeBSD 8.0. The old functionality of creating a kernel process was renamed to kproc_create(9). Prior

to FreeBSD 5.0, the kthread_shutdown(), kthread_resume(), kthread_suspend(), and

kthread_suspend_check() functions were named shutdown_kproc(), resume_kproc(), shutdown_kproc(),

and kproc_suspend_loop(), respectively.

KTHREAD(9) FreeBSD Kernel Developer’s Manual KTHREAD(9)

FreeBSD 14.2-RELEASE July 15, 2014 FreeBSD 14.2-RELEASE

