
NAME
CTR0, CTR1, CTR2, CTR3, CTR4, CTR5 - kernel tracing facility

SYNOPSIS
#include <sys/param.h>
#include <sys/ktr.h>

extern int ktr_cpumask;

extern int ktr_entries;

extern int ktr_extend;

extern int ktr_mask;

extern int ktr_verbose;

extern struct ktr_entry ktr_buf[];

void

CTR(u_int mask, char *format, ...);

void

CTR0(u_int mask, char *format);

void

CTR1(u_int mask, char *format, arg1);

void

CTR2(u_int mask, char *format, arg1, arg2);

void

CTR3(u_int mask, char *format, arg1, arg2, arg3);

void

CTR4(u_int mask, char *format, arg1, arg2, arg3, arg4);

void

CTR5(u_int mask, char *format, arg1, arg2, arg3, arg4, arg5);

void

CTR6(u_int mask, char *format, arg1, arg2, arg3, arg4, arg5, arg6);

DESCRIPTION
KTR provides a circular buffer of events that can be logged in a printf(9) style fashion. These events

KTR(9) FreeBSD Kernel Developer’s Manual KTR(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2022 FreeBSD 14.0-RELEASE-p11



can then be dumped with ddb(4), gdb(1) (ports/devel/gdb) or ktrdump(8).

Events are created and logged in the kernel via the CTR and CTRx macros. The first parameter is a

mask of event types (KTR_*) defined in <sys/ktr_class.h>. The event will be logged only if any of the

event types specified in mask are enabled in the global event mask stored in ktr_mask. The format

argument is a printf(9) style format string used to build the text of the event log message. Following the

format string are zero to six arguments referenced by format. Each event is logged with a file name and

source line number of the originating CTR call, and a timestamp in addition to the log message.

The event is stored in the circular buffer with supplied arguments as is, and formatting is done at the

dump time. Do not use pointers to the objects with limited lifetime, for instance, strings, because the

pointer may become invalid when buffer is printed.

The CTRx macros differ only in the number of arguments each one takes, as indicated by its name.

The ktr_entries variable contains the number of entries in the ktr_buf array. These variables are mostly

useful for post-mortem crash dump tools to locate the base of the circular trace buffer and its length.

The ktr_mask variable contains the run time mask of events to log.

The CPU event mask is stored in the ktr_cpumask variable.

The ktr_verbose variable stores the verbose flag that controls whether events are logged to the console in

addition to the event buffer.

EXAMPLES
This example demonstrates the use of tracepoints at the KTR_PROC logging level.

void

mi_switch()

{

...

/*

* Pick a new current process and record its start time.

*/

...

CTR3(KTR_PROC, "mi_switch: old proc %p (pid %d)", p, p->p_pid);

...

cpu_switch();

...

KTR(9) FreeBSD Kernel Developer’s Manual KTR(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2022 FreeBSD 14.0-RELEASE-p11



CTR3(KTR_PROC, "mi_switch: new proc %p (pid %d)", p, p->p_pid);

...

}

SEE ALSO
ktr(4), ktrdump(8)

HISTORY
The KTR kernel tracing facility first appeared in BSD/OS 3.0 and was imported into FreeBSD 5.0.

The CTR() macro accepting a variable number of arguments first appeared in FreeBSD 14.0.

BUGS
Currently there is one global buffer shared among all CPUs. It might be profitable at some point in time

to use per-CPU buffers instead so that if one CPU halts or starts spinning, then the log messages it

emitted just prior to halting or spinning will not be drowned out by events from the other CPUs.

The arguments given in CTRx() macros are stored as u_long, so do not pass arguments larger than size

of an u_long type. For example passing 64bit arguments on 32bit architectures will give incorrect

results.

KTR(9) FreeBSD Kernel Developer’s Manual KTR(9)

FreeBSD 14.0-RELEASE-p11 April 12, 2022 FreeBSD 14.0-RELEASE-p11


