
NAME
Kyuafile - Test suite description files

SYNOPSIS
atf_test_program(string name, [string metadata]);

current_kyuafile();

fs.basename(string path);

fs.dirname(string path);

fs.exists(string path);

fs.files(string path);

fs.is_absolute(string path);

fs.join(string path, string path);

include(string path);

plain_test_program(string name, [string metadata]);

syntax(int version);

tap_test_program(string name, [string metadata]);

test_suite(string name);

DESCRIPTION
A test suite is a collection of test programs and is represented by a hierarchical layout of test binaries on

the file system. Any subtree of the file system can represent a test suite, provided that it includes one or

more Kyuafiles, which are the test suite definition files.

A Kyuafile is a Lua script whose purpose is to describe the structure of the test suite it belongs to. To do

so, the script has access to a collection of special functions provided by kyua(1) as described in Helper

functions.

File versioning

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6



Every Kyuafile file starts with a call to syntax(int version). This call determines the specific schema

used by the file so that future backwards-incompatible modifications to the file can be introduced.

Any new Kyuafile file should set version to ‘2’.

Test suite definition
If the Kyuafile registers any test programs, the Kyuafile must define the name of the test suite the test

programs belong to by using the test_suite() function at the very beginning of the file.

The test suite name provided in the test_suite() call tells kyua(1) which set of configuration variables

from kyua.conf(5) to pass to the test programs at run time.

Test program registration
A Kyuafile can register test programs by means of a variety of *_test_program() functions, all of which

take the name of a test program and a set of optional metadata properties that describe such test program.

The test programs to be registered must live in the current directory; in other words, the various

*_test_program() calls cannot reference test programs in other directories. The rationale for this is to

force all Kyuafile files to be self-contained, and to simplify their internal representation.

ATF test programs are those that use the atf(7) libraries. They can be registered with the

atf_test_program() table constructor. This function takes the name of the test program and a collection

of optional metadata settings for all the test cases in the test program. Any metadata properties defined

by the test cases themselves override the metadata values defined here.

Plain test programs are those that return 0 on success and non-0 on failure; in general, most test

programs (even those that use fancy unit-testing libraries) behave this way and thus also qualify as plain

test programs. They can be registered with the plain_test_program() table constructor. This function

takes the name of the test program, an optional test_suite name that overrides the global test suite name,

and a collection of optional metadata settings for the test program.

TAP test programs are those that implement the Test Anything Protocol. They can be registered with

the tap_test_program() table constructor. This function takes the name of the test program and a

collection of optional metadata settings for the test program.

The following metadata properties can be passed to any test program definition:

allowed_architectures

Whitespace-separated list of machine architecture names allowed by the test. If empty or not

defined, the test is allowed to run on any machine architecture.

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6



allowed_platforms

Whitespace-separated list of machine platform names allowed by the test. If empty or not

defined, the test is allowed to run on any machine platform.

custom.NAME

Custom variable defined by the test where ‘NAME’ denotes the name of the variable. These

variables are useful to tag your tests with information specific to your project. The values of

such variables are propagated all the way from the tests to the results files and later to any

generated reports.

Note that if the name happens to have dashes or any other special characters in it, you will

have to use a special Lua syntax to define the property. Refer to the EXAMPLES section

below for clarification.

description

Textual description of the test.

is_exclusive

If true, indicates that this test program cannot be executed along any other programs at the

same time. Test programs that affect global system state, such as those that modify the value

of a sysctl(8) setting, must set themselves as exclusive to prevent failures due to race

conditions. Defaults to false.

required_configs

Whitespace-separated list of configuration variables that the test requires to be defined before

it can run.

required_disk_space

Amount of available disk space that the test needs to run successfully.

required_files

Whitespace-separated list of paths that the test requires to exist before it can run.

required_memory

Amount of physical memory that the test needs to run successfully.

required_programs

Whitespace-separated list of basenames or absolute paths pointing to executable binaries that

the test requires to exist before it can run.

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6



required_user

If empty, the test has no restrictions on the calling user for it to run. If set to ‘unprivileged’,

the test needs to not run as root. If set to ‘root’, the test must run as root.

timeout

Amount of seconds that the test is allowed to execute before being killed.

Recursion
To reference test programs in another subdirectory, a different Kyuafile must be created in that directory

and it must be included into the original Kyuafile by means of the include() function.

include() may only be called with a relative path and with at most one directory component. This is by

design: Kyua uses the file system structure as the layout of the test suite definition. Therefore, each

subdirectory in a test suite must include its own Kyuafile and each Kyuafile can only descend into the

Kyuafiles of immediate subdirectories.

If you need to source a Kyuafile located in disjoint parts of your file system namespace, you will have to

create a ‘shadow tree’ using symbolic links and possibly helper Kyuafiles to plug the various

subdirectories together. See the EXAMPLES section below for details.

Note that each file is processed in its own Lua environment: there is no mechanism to pass state from

one file to the other. The reason for this is that there is no such thing as a "top-level" Kyuafile in a test

suite: the user has to be able to run the test suite from any directory in a given hierarchy, and this

execution must not depend on files that live in parent directories.

Top-level Kyuafile
Every system has a top directory into which test suites get installed. The default is /usr/tests. Within

this directory live test suites, each of which is in an independent subdirectory. Each subdirectory can be

provided separately by independent third-party packages.

Kyua allows running all the installed test suites at once in order to provide comprehensive cross-

component reports. In order to do this, there is a special file in the top directory that knows how to

inspect the subdirectories in search for other Kyuafiles and include them.

The FILES section includes more details on where this file lives.

Helper functions
The ‘base’, ‘string’, and ‘table’ Lua modules are fully available in the context of a Kyuafile.

The following extra functions are provided by Kyua:

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6



string current_kyuafile()

Returns the absolute path to the current Kyuafile.

string fs.basename(string path)

Returns the last component of the given path.

string fs.dirname(string path)

Returns the given path without its last component or a dot if the path has a single component.

bool fs.exists(string path)

Checks if the given path exists. If the path is not absolute, it is relative to the directory

containing the Kyuafile in which the call to this function occurs.

iterator fs.files(string path)

Opens a directory for scanning of its entries. The returned iterator yields an entry on each

call, and the entry is simply the filename. If the path is not absolute, it is relative to the

directory containing the Kyuafile in which the call to this function occurs.

is_absolute fs.is_absolute(string path)

Returns true if the given path is absolute; false otherwise.

join fs.join(string path, string path)

Concatenates the two paths. The second path cannot be absolute.

FILES
/usr/tests/Kyuafile.

Top-level Kyuafile for the current system.

/usr/share/examples/kyua/Kyuafile.top.

Sample file to serve as a top-level Kyuafile.

EXAMPLES
The following Kyuafile is the simplest you can define. It provides a test suite definition and registers a

couple of different test programs using different interfaces:

syntax(2)

test_suite(’first’)

atf_test_program{name=’integration_test’}

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6



plain_test_program{name=’legacy_test’}

The following example is a bit more elaborate. It introduces some metadata properties to the test

program definitions and recurses into a couple of subdirectories:

syntax(2)

test_suite(’second’)

plain_test_program{name=’legacy_test’,

allowed_architectures=’amd64 i386’,

required_files=’/bin/ls’,

timeout=30}

tap_test_program{name=’privileged_test’,

required_user=’root’}

include(’module-1/Kyuafile’)

include(’module-2/Kyuafile’)

The syntax to define custom properties may be not obvious if their names have any characters that make

the property name not be a valid Lua identifier. Dashes are just one example. To set such properties, do

something like this:

syntax(2)

test_suite(’FreeBSD’)

plain_test_program{name=’the_test’,

[’custom.FreeBSD-Bug-Id’]=’category/12345’}

Connecting disjoint test suites
Now suppose you had various test suites on your file system and you would like to connect them

together so that they could be executed and treated as a single unit. The test suites we would like to

connect live under /usr/tests, /usr/local/tests and ~/local/tests.

We cannot create a Kyuafile that references these because the include() directive does not support

absolute paths. Instead, what we can do is create a shadow tree using symbolic links:

$ mkdir ~/everything

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6



$ ln -s /usr/tests ~/everything/system-tests

$ ln -s /usr/local/tests ~/everything/local-tests

$ ln -s ~/local/tests ~/everything/home-tests

And then we create an ~/everything/Kyuafile file to drive the execution of the integrated test suite:

syntax(2)

test_suite(’test-all-the-things’)

include(’system-tests/Kyuafile’)

include(’local-tests/Kyuafile’)

include(’home-tests/Kyuafile’)

Or, simply, you could reuse the sample top-level Kyuafile to avoid having to manually craft the list of

directories into which to recurse:

$ cp /usr/share/examples/kyua/Kyuafile.top ~/everything/Kyuafile

SEE ALSO
kyua(1)

KYUAFILE(5) FreeBSD File Formats Manual KYUAFILE(5)

FreeBSD 14.0-RELEASE-p6 July 3, 2015 FreeBSD 14.0-RELEASE-p6


