
NAME
LHASH, DECLARE_LHASH_OF, OPENSSL_LH_COMPFUNC, OPENSSL_LH_HASHFUNC,

OPENSSL_LH_DOALL_FUNC, LHASH_DOALL_ARG_FN_TYPE,

IMPLEMENT_LHASH_HASH_FN, IMPLEMENT_LHASH_COMP_FN, lh_TYPE_new,

lh_TYPE_free, lh_TYPE_flush, lh_TYPE_insert, lh_TYPE_delete, lh_TYPE_retrieve,

lh_TYPE_doall, lh_TYPE_doall_arg, lh_TYPE_error, OPENSSL_LH_new, OPENSSL_LH_free,

OPENSSL_LH_flush, OPENSSL_LH_insert, OPENSSL_LH_delete, OPENSSL_LH_retrieve,

OPENSSL_LH_doall, OPENSSL_LH_doall_arg, OPENSSL_LH_error - dynamic hash table

SYNOPSIS
#include <openssl/lhash.h>

DECLARE_LHASH_OF(TYPE);

LHASH_OF(TYPE) *lh_TYPE_new(OPENSSL_LH_HASHFUNC hash, OPENSSL_LH_COMPFUNC compare);

void lh_TYPE_free(LHASH_OF(TYPE) *table);

void lh_TYPE_flush(LHASH_OF(TYPE) *table);

TYPE *lh_TYPE_insert(LHASH_OF(TYPE) *table, TYPE *data);

TYPE *lh_TYPE_delete(LHASH_OF(TYPE) *table, TYPE *data);

TYPE *lh_TYPE_retrieve(LHASH_OF(TYPE) *table, TYPE *data);

void lh_TYPE_doall(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNC func);

void lh_TYPE_doall_arg(LHASH_OF(TYPE) *table, OPENSSL_LH_DOALL_FUNCARG func,

TYPE *arg);

int lh_TYPE_error(LHASH_OF(TYPE) *table);

typedef int (*OPENSSL_LH_COMPFUNC)(const void *, const void *);

typedef unsigned long (*OPENSSL_LH_HASHFUNC)(const void *);

typedef void (*OPENSSL_LH_DOALL_FUNC)(const void *);

typedef void (*LHASH_DOALL_ARG_FN_TYPE)(const void *, const void *);

OPENSSL_LHASH *OPENSSL_LH_new(OPENSSL_LH_HASHFUNC h, OPENSSL_LH_COMPFUNC c);

void OPENSSL_LH_free(OPENSSL_LHASH *lh);

void OPENSSL_LH_flush(OPENSSL_LHASH *lh);

void *OPENSSL_LH_insert(OPENSSL_LHASH *lh, void *data);

void *OPENSSL_LH_delete(OPENSSL_LHASH *lh, const void *data);

void *OPENSSL_LH_retrieve(OPENSSL_LHASH *lh, const void *data);

OPENSSL_LH_COMPFUNC(3ossl) OpenSSL OPENSSL_LH_COMPFUNC(3ossl)

3.0.11 2023-09-19 OPENSSL_LH_COMPFUNC(3ossl)



void OPENSSL_LH_doall(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNC func);

void OPENSSL_LH_doall_arg(OPENSSL_LHASH *lh, OPENSSL_LH_DOALL_FUNCARG func, void *arg);

int OPENSSL_LH_error(OPENSSL_LHASH *lh);

DESCRIPTION
This library implements type-checked dynamic hash tables. The hash table entries can be arbitrary

structures. Usually they consist of key and value fields. In the description here, TYPE is used a

placeholder for any of the OpenSSL datatypes, such as SSL_SESSION.

lh_TYPE_new() creates a new LHASH_OF(TYPE) structure to store arbitrary data entries, and

specifies the ’hash’ and ’compare’ callbacks to be used in organising the table’s entries. The hash

callback takes a pointer to a table entry as its argument and returns an unsigned long hash value for its

key field. The hash value is normally truncated to a power of 2, so make sure that your hash function

returns well mixed low order bits. The compare callback takes two arguments (pointers to two hash

table entries), and returns 0 if their keys are equal, nonzero otherwise.

If your hash table will contain items of some particular type and the hash and compare callbacks

hash/compare these types, then the IMPLEMENT_LHASH_HASH_FN and

IMPLEMENT_LHASH_COMP_FN macros can be used to create callback wrappers of the prototypes

required by lh_TYPE_new() as shown in this example:

/*

* Implement the hash and compare functions; "stuff" can be any word.

*/

static unsigned long stuff_hash(const TYPE *a)

{

...

}

static int stuff_cmp(const TYPE *a, const TYPE *b)

{

...

}

/*

* Implement the wrapper functions.

*/

static IMPLEMENT_LHASH_HASH_FN(stuff, TYPE)

static IMPLEMENT_LHASH_COMP_FN(stuff, TYPE)

OPENSSL_LH_COMPFUNC(3ossl) OpenSSL OPENSSL_LH_COMPFUNC(3ossl)

3.0.11 2023-09-19 OPENSSL_LH_COMPFUNC(3ossl)



If the type is going to be used in several places, the following macros can be used in a common header

file to declare the function wrappers:

DECLARE_LHASH_HASH_FN(stuff, TYPE)

DECLARE_LHASH_COMP_FN(stuff, TYPE)

Then a hash table of TYPE objects can be created using this:

LHASH_OF(TYPE) *htable;

htable = B<lh_I<TYPE>_new>(LHASH_HASH_FN(stuff), LHASH_COMP_FN(stuff));

lh_TYPE_free() frees the LHASH_OF(TYPE) structure table. Allocated hash table entries will not be

freed; consider using lh_TYPE_doall() to deallocate any remaining entries in the hash table (see

below).

lh_TYPE_flush() empties the LHASH_OF(TYPE) structure table. New entries can be added to the

flushed table. Allocated hash table entries will not be freed; consider using lh_TYPE_doall() to

deallocate any remaining entries in the hash table (see below).

lh_TYPE_insert() inserts the structure pointed to by data into table. If there already is an entry with the

same key, the old value is replaced. Note that lh_TYPE_insert() stores pointers, the data are not copied.

lh_TYPE_delete() deletes an entry from table.

lh_TYPE_retrieve() looks up an entry in table. Normally, data is a structure with the key field(s) set;

the function will return a pointer to a fully populated structure.

lh_TYPE_doall() will, for every entry in the hash table, call func with the data item as its parameter.

For example:

/* Cleans up resources belonging to ’a’ (this is implemented elsewhere) */

void TYPE_cleanup_doall(TYPE *a);

/* Implement a prototype-compatible wrapper for "TYPE_cleanup" */

IMPLEMENT_LHASH_DOALL_FN(TYPE_cleanup, TYPE)

/* Call "TYPE_cleanup" against all items in a hash table. */

lh_TYPE_doall(hashtable, LHASH_DOALL_FN(TYPE_cleanup));

OPENSSL_LH_COMPFUNC(3ossl) OpenSSL OPENSSL_LH_COMPFUNC(3ossl)

3.0.11 2023-09-19 OPENSSL_LH_COMPFUNC(3ossl)



/* Then the hash table itself can be deallocated */

lh_TYPE_free(hashtable);

When doing this, be careful if you delete entries from the hash table in your callbacks: the table may

decrease in size, moving the item that you are currently on down lower in the hash table - this could

cause some entries to be skipped during the iteration. The second best solution to this problem is to set

hash->down_load=0 before you start (which will stop the hash table ever decreasing in size). The best

solution is probably to avoid deleting items from the hash table inside a "doall" callback!

lh_TYPE_doall_arg() is the same as lh_TYPE_doall() except that func will be called with arg as the

second argument and func should be of type LHASH_DOALL_ARG_FN(TYPE) (a callback prototype

that is passed both the table entry and an extra argument). As with lh_doall(), you can instead choose

to declare your callback with a prototype matching the types you are dealing with and use the

declare/implement macros to create compatible wrappers that cast variables before calling your type-

specific callbacks. An example of this is demonstrated here (printing all hash table entries to a BIO

that is provided by the caller):

/* Prints item ’a’ to ’output_bio’ (this is implemented elsewhere) */

void TYPE_print_doall_arg(const TYPE *a, BIO *output_bio);

/* Implement a prototype-compatible wrapper for "TYPE_print" */

static IMPLEMENT_LHASH_DOALL_ARG_FN(TYPE, const TYPE, BIO)

/* Print out the entire hashtable to a particular BIO */

lh_TYPE_doall_arg(hashtable, LHASH_DOALL_ARG_FN(TYPE_print), BIO,

logging_bio);

lh_TYPE_error() can be used to determine if an error occurred in the last operation.

OPENSSL_LH_new() is the same as the lh_TYPE_new() except that it is not type specific. So instead

of returning an LHASH_OF(TYPE) value it returns a void *. In the same way the functions

OPENSSL_LH_free(), OPENSSL_LH_flush(), OPENSSL_LH_insert(), OPENSSL_LH_delete(),
OPENSSL_LH_retrieve(), OPENSSL_LH_doall(), OPENSSL_LH_doall_arg(), and

OPENSSL_LH_error() are equivalent to the similarly named lh_TYPE functions except that they

return or use a void * where the equivalent lh_TYPE function returns or uses a TYPE * or

LHASH_OF(TYPE) *. lh_TYPE functions are implemented as type checked wrappers around the

OPENSSL_LH functions. Most applications should not call the OPENSSL_LH functions directly.

RETURN VALUES
lh_TYPE_new() and OPENSSL_LH_new() return NULL on error, otherwise a pointer to the new

OPENSSL_LH_COMPFUNC(3ossl) OpenSSL OPENSSL_LH_COMPFUNC(3ossl)

3.0.11 2023-09-19 OPENSSL_LH_COMPFUNC(3ossl)



LHASH structure.

When a hash table entry is replaced, lh_TYPE_insert() or OPENSSL_LH_insert() return the value

being replaced. NULL is returned on normal operation and on error.

lh_TYPE_delete() and OPENSSL_LH_delete() return the entry being deleted. NULL is returned if

there is no such value in the hash table.

lh_TYPE_retrieve() and OPENSSL_LH_retrieve() return the hash table entry if it has been found,

NULL otherwise.

lh_TYPE_error() and OPENSSL_LH_error() return 1 if an error occurred in the last operation, 0

otherwise. It’s meaningful only after non-retrieve operations.

lh_TYPE_free(), OPENSSL_LH_free(), lh_TYPE_flush(), OPENSSL_LH_flush(), lh_TYPE_doall()
OPENSSL_LH_doall(), lh_TYPE_doall_arg() and OPENSSL_LH_doall_arg() return no values.

NOTE
The LHASH code is not thread safe. All updating operations, as well as lh_TYPE_error() or

OPENSSL_LH_error() calls must be performed under a write lock. All retrieve operations should be

performed under a read lock, unless accurate usage statistics are desired. In which case, a write lock

should be used for retrieve operations as well. For output of the usage statistics, using the functions

from OPENSSL_LH_stats(3), a read lock suffices.

The LHASH code regards table entries as constant data. As such, it internally represents lh_insert()’d
items with a "const void *" pointer type. This is why callbacks such as those used by lh_doall() and

lh_doall_arg() declare their prototypes with "const", even for the parameters that pass back the table

items’ data pointers - for consistency, user-provided data is "const" at all times as far as the LHASH

code is concerned. However, as callers are themselves providing these pointers, they can choose

whether they too should be treating all such parameters as constant.

As an example, a hash table may be maintained by code that, for reasons of encapsulation, has only

"const" access to the data being indexed in the hash table (i.e. it is returned as "const" from elsewhere

in their code) - in this case the LHASH prototypes are appropriate as-is. Conversely, if the caller is

responsible for the life-time of the data in question, then they may well wish to make modifications to

table item passed back in the lh_doall() or lh_doall_arg() callbacks (see the "TYPE_cleanup" example

above). If so, the caller can either cast the "const" away (if they’re providing the raw callbacks

themselves) or use the macros to declare/implement the wrapper functions without "const" types.

Callers that only have "const" access to data they’re indexing in a table, yet declare callbacks without

OPENSSL_LH_COMPFUNC(3ossl) OpenSSL OPENSSL_LH_COMPFUNC(3ossl)

3.0.11 2023-09-19 OPENSSL_LH_COMPFUNC(3ossl)



constant types (or cast the "const" away themselves), are therefore creating their own risks/bugs

without being encouraged to do so by the API. On a related note, those auditing code should pay

special attention to any instances of DECLARE/IMPLEMENT_LHASH_DOALL_[ARG_]_FN

macros that provide types without any "const" qualifiers.

BUGS
lh_TYPE_insert() and OPENSSL_LH_insert() return NULL both for success and error.

SEE ALSO
OPENSSL_LH_stats(3)

HISTORY
In OpenSSL 1.0.0, the lhash interface was revamped for better type checking.

COPYRIGHT
Copyright 2000-2022 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

OPENSSL_LH_COMPFUNC(3ossl) OpenSSL OPENSSL_LH_COMPFUNC(3ossl)

3.0.11 2023-09-19 OPENSSL_LH_COMPFUNC(3ossl)


