libcurl-thread(3) FreeBSD Library Functions Manual libcurl-thread(3)

NAME
libcurl-thread - libcurl thread saf ety

Multi-threading with libcurl
libcurl isthread safe but has no internal thread synchronization. Y ou may have to provide your own
locking should you meet any of the thread safety exceptions below.

Handles
Y ou must never share the same handle in multiple threads. Y ou can pass the handles around among
threads, but you must never use a single handle from more than one thread at any given time.

Shared objects
Y ou can share certain data between multiple handles by using the share interface but you must provide
your own locking and set curl_share_setopt(3) CURLSHOPT_L OCKFUNC and
CURLSHOPT_UNLOCKFUNC.

Note that some items are specifically documented as not thread-safe in the share API (the connection
pool and HSTS cache for example).

TLS
All current TLS libraries libcurl supports are thread-safe.

OpenSSL
OpenSSL 1.1.0+ can be safely used in multi-threaded applications provided that support for the
underlying OS threading API is built-in. For older versions of OpenSSL, the user must set mutex
callbacks.

libcurl may not be able to fully clean up after multi-threaded OpenSSL depending on how
OpenSSL was built and loaded as alibrary. It is possible in some rare circumstances a memory
leak could occur unless you implement your own OpenSSL thread cleanup.

For example, on Windows if both libcurl and OpenSSL are linked statically toaDLL or
application then OpenSSL may leak memory unlessthe DLL or application calls

OPENSSL _thread stop() before each thread terminates. If OpenSSL isbuilt asaDLL then it does
this cleanup automatically and thereisno leak. If libcurl isbuilt asa DLL and OpenSSL is linked
statically to it then libcurl does this cleanup automatically and thereis no leak (added in libcurl
8.8.0).

Please review the OpenSSL documentation for afull list of circumstances:
https.//docs.openssl.org/3.0/man3/OPENSSL _init_crypto/#notes

libcurl 2024-12-22 libcurl-thread(3)



libcurl-thread(3) FreeBSD Library Functions Manual libcurl-thread(3)

Signals
Signals are used for timing out name resolves (during DNS lookup) - when built without using either
the c-ares or threaded resolver backends. On systems that have a signal concept.

When using multiple threads you should set the CURLOPT_NOS GNAL(3) optionto 1L for all
handles. Everything works fine except that timeouts cannot be honored during DNS lookups - which
you can work around by building libcurl with c-ares or threaded-resolver support. c-aresisalibrary
that provides asynchronous name resolves. On some platforms, libcurl simply cannot function properly
multi-threaded unless the CURLOPT_NOSIGNAL(3) option is set.

When CURLOPT_NOS GNAL(3) isset to 1L, your application needs to deal with therisk of a
SIGPIPE (that at |east the OpenSSL backend can trigger). Note that setting

CURLOPT_NOS GNAL(3) to OL does not work in athreaded situation as there is a race condition
where libcurl risks restoring the former signal handler while another thread should still ignoreiit.

Nameresolving
The gethostbyname or getaddrinfo and other name resolving system calls used by libcurl are provided
by your operating system and must be thread safe. It isimportant that libcurl can find and use thread
safe versions of these and other system calls, as otherwise it cannot function fully thread safe. Some
operating systems are known to have faulty thread implementations. We have previously received
problem reports on *BSD (at least in the past, they may be working fine these days). Some operating
systems that are known to have solid and working thread support are Linux, Solaris and Windows.

curl_global_* functions
These functions are thread-safe since libcurl 7.84.0 if curl_version_info(3) has the
CURL_VERSION_THREADSAFE feature bit set (most platforms).

If these functions are not thread-safe and you are using libcurl with multiple threads it is especially
important that before use you call curl_global _init(3) or curl_global_init_mem(3) to explicitly initiaize
the library and its dependents, rather than rely on the "lazy" fail-safe initialization that takes place the
first time curl_easy_init(3) is called. For an in-depth explanation refer to libcurl(3) section GLOBAL
CONSTANTS.

Memory functions
These functions, provided either by your operating system or your own replacements, must be thread

safe. You can use curl_global_init_mem(3) to set your own replacement memory functions.

Non-safe functions
CURLOPT _DNS USE_GLOBAL_CACHE(3) is not thread-safe.

libcurl 2024-12-22 libcurl-thread(3)



libcurl-thread(3) FreeBSD Library Functions Manual libcurl-thread(3)

curl_version_info(3) is not thread-safe before libcurl initialization.

SEE ALSO
libcurl-security(3)

libcurl 2024-12-22 libcurl-thread(3)



