LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

NAME
libpng - Portable Network Graphics (PNG) Reference Library 1.6.40

SYNOPSIS
#include <png.h>
png_uint_32 png_access version_number (void);
void png_benign_error (png_structp png_ptr, png_const_charp error);
void png_build_grayscale palette (int bit_depth, png_colorp palette);
png_voidp png_calloc (png_structp png_ptr, png_alloc_size t size);
void png_chunk_benign_error (png_structp png_ptr, png_const_charp error);
void png_chunk_error (png_structp png_ptr, png_const_charp error);
void png_chunk_warning (png_structp png_ptr, png_const_charp message);
void png_convert_from_struct_tm (png_timep ptime, struct tm FAR * ttime);
void png_convert_from_time_t (png_timep ptime, time_t ttime);
png_charp png_convert _to rfc1123 (png_structp png_ptr, png_timep ptime);
png_infop png_create info_struct (png_structp png_ptr);

png_structp png_create read_struct (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create read_struct_2 (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem ptr, png_malloc_ptr malloc_fn,

png_free ptr free fn);

png_structp png_create write struct (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create write struct_2 (png_const_charp user_png_ver, png_voidp error_ptr,

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem ptr, png_malloc_ptr malloc_fn,
png_free ptr free fn);

void png_data freer (png_structp png_ptr, png_infop info_ptr, int freer, png_uint_32 mask);
void png_destroy_info_struct (png_structp png_ptr, png_infopp info_ptr_ptr);

void png_destroy_read_struct (png_structpp png_ptr_ptr, png_infopp info_ptr_ptr, png_infopp
end_info_ptr_ptr);

void png_destroy _write struct (png_structpp png_ptr_ptr, png_infopp info_ptr_ptr);
void png_err (png_structp png_ptr);

void png_error (png_structp png_ptr, png_const_charp error);

void png_free (png_structp png_ptr, png_voidp ptr);

void png_free chunk_list (png_structp png_ptr);

void png_free_default (png_structp png_ptr, png_voidp ptr);

void png_free_data (png_structp png_ptr, png_infop info_ptr, int num);

png_bytepng get_bit_depth (png_const_structp png_ptr, png_const_infop info_ptr);

png_uint_32 png_get bKGD (png_const_structp png_ptr, png_infop info_ptr, png_color_16p
*pbackground);

png_byte png_get_channels (png_const_structp png_ptr, png_const_infop info_ptr);

png_uint_32 png_get cHRM (png_const_structp png_ptr, png_const_infop info_ptr, double *white X,
double *white_y, double *red_x, double*red vy, double *green x, double *green_y, double *blue x,
double*blue v);

png_uint_32 png_get cHRM _fixed (png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 *white_x, png_uint_32 *white y, png_uint_32 *red_x, png_uint_32*red vy, png_uint_32
*green_x, png_uint_32 *green_y, png_uint_32 *blue_x, png_uint_32 *blue_y);

png_uint_32 png_get_cHRM_XYZ (png_structp png_ptr, png_const_infop info_ptr, double *red_X,

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

double*red_Y, double*red Z, double *green_X, double*green_Y, double *green Z, double
*blue X, double*blue Y, double *blue_2Z);

png _uint_32 png_get cHRM_XYZ_fixed (png_structp png_ptr, png_const_infop info_ptr,
png_fixed_point *int_red_X, png_fixed_point *int_red_Y, png_fixed_point *int_red Z,
png_fixed_point *int_green X, png_fixed_point *int_green_Y, png_fixed_point *int_green Z,
png_fixed_point *int_blue X, png_fixed_point *int_blue Y, png_fixed_point *int_blue 2);
png_uint_32 png _get chunk_cache max (png_const_structp png_ptr);

png_alloc_size t png get chunk_malloc_max (png_const_structp png_ptr);

png_byte png_get_color_type (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get_compression_buffer_size (png_const_structp png_ptr);

png_byte png_get_compression_type (png_const_structp png_ptr, png_const_infop info_ptr);
png_byte png get _copyright (png_const_structp png_ptr);

png_uint_32 png_get_current_row_number (png_const_structp);

png_byte png_get_current_pass number (png_const_structp);

png_voidp png_get_error_ptr (png_const_structp png_ptr);

png_bytepng get filter_type (png_const_structp png_ptr, png_const_infop info_ptr);

png_uint_32 png_get gAMA (png_const_structp png_ptr, png_const_infop info_ptr, double
*file_gamma);

png_uint_32 png_get_ gAMA_fixed (png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 *int_file_gamma);

png_bytepng get header ver (png_const_structp png_ptr);
png_bytepng_get header version (png_const_structp png_ptr);

png_uint_32 png_get_eXIf (png_const_structp png_ptr, png_const_infop info_ptr, png_bytep *exif);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_uint_32 png get_eXIf 1 (png_const_structp png_ptr, png_const_infop info_ptr, png_unit_32
*num_exif, png_bytep *exif);

png_uint_32 png_get hIST (png_const_structp png_ptr, png_const_infop info_ptr, png_uint_16p
*hist);

png_uint_32 png_get iCCP (png_const_structp png_ptr, png_const_infop info_ptr, png_char pp name,
int *compression_type, png_bytepp profile, png_uint_32 *proflen);

png_uint_32 png get IHDR (png_structp png_ptr, png_infop info_ptr, png_uint_32 *width,
png_uint_32 *height, int *bit_depth, int *color_type, int *interlace type, int *compression_type, int
*filter_type);

png_uint_32 png_get_image_height (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get_image width (png_const_structp png_ptr, png_const_infop info_ptr);
png_int_32 png get_int_32 (png_bytep buf);

png_bytepng_get_interlace type (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get_io_chunk_type (png_const_structp png_ptr);

png_voidp png_get_io_ptr (png_structp png_ptr);

png_uint_32 png _get_io_state (png_structp png_ptr);

png_byte png_get_libpng_ver (png_const_structp png_ptr);

int png_get_palette_ max(png_const_structp png_ptr, png_const_infop info_ptr);
png_voidp png_get_mem_ptr (png_const_structp png_ptr);

png_uint_32 png_get oFFs (png_const_structp png_ptr, png_const_infop info_ptr, png_uint_32
*offset_x, png_uint_32 *offset_y, int *unit_type);

png_uint_32 png_get pCAL (png_const_structp png_ptr, png_const_infop info_ptr, png_charp

*purpose, png_int_32 * X0, png_int_32 *X1, int *type, int *nparams, png_charp *units, png_charpp
* params);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_uint_32 png get pHYs(png_const_structp png_ptr, png_const_infop info_ptr, png_uint_32
*res X, png_uint_32*res vy, int *unit_type);

float png_get pixel_aspect_ratio (png_const_structp png_ptr, png_const_infop info_ptr);

png_uint_32 png_get_pHYs dpi (png_const_structp png_ptr, png_const_infop info_ptr, png_uint_32
*res X, png_uint_32 *res vy, int *unit_type);

png_fixed_point png_get pixel_aspect_ratio fixed (png_const_structp png_ptr, png_const_infop
info_ptr);

png_uint_32 png_get pixels per_inch (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get_pixels per_meter (png_const_structp png_ptr, png_const_infop info_ptr);
png_voidp png_get_progressive ptr (png_const_structp png_ptr);

png_uint_32 png get PLTE (png_const_structp png_ptr, png_const_infop info_ptr, png_colorp
*palette, int *num_palette);

png_bytepng_get_rgb_to gray_status(png_const_structp png_ptr);

png_uint_32 png_get_rowbytes (png_const_structp png_ptr, png_const_infop info_ptr);
png_bytepp png_get_rows (png_const_structp png_ptr, png_const_infop info_ptr);

png_uint_32 png get sBIT (png_const_structp png_ptr, png_infop info_ptr, png_color_8p *sig_hit);

void png_get_sCAL (png_const_structp png_ptr, png_const_infop info_ptr, int* unit, double* width,
double* height);

void png_get_sCAL _fixed (png_const_structp png_ptr, png_const_infop info_ptr, int* unit,
png_fixed_pointp width, png_fixed_pointp height);

void png_get sSCAL_s(png_const_structp png_ptr, png_const_infop info_ptr, int* unit, png_charpp
width, png_char pp height);

png_bytep png_get_signature (png_const_structp png_ptr, png_infop info_ptr);

png_uint_32 png_get sPLT (png_const_structp png_ptr, png_const_infop info_ptr, png_spalette p

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

*gplt_ptr);

png_uint_32 png_get sSRGB (png_const_structp png_ptr, png_const_infop info_ptr, int
*file_srgb_intent);

png_uint_32 png_get_text (png_const_structp png_ptr, png_const_infop info_ptr, png_textp *text_ptr,
int *num_text);

png_uint_32 png _get tIME (png_const_structp png_ptr, png_infop info_ptr, png_timep *mod_time);

png_uint_32 png_get tRNS (png_const_structp png_ptr, png_infop info_ptr, png_bytep *trans alpha,
int *num_trans, png_color_16p *trans_color);

[* Thisfunction isreally an inline macro. */

png_uint_16 png_get_uint_16 (png_bytep buf);

png_uint_32 png_get_uint_31 (png_structp png_ptr, png_bytep buf);
/* Thisfunction isreally an inline macro. */

png_uint_32 png_get_uint_32 (png_bytep buf);

png_uint_32 png_get_unknown_chunks (png_const_structp png_ptr, png_const_infop info_ptr,
png_unknown_chunkpp unknowns);

png_voidp png_get_user_chunk_ptr (png_const_structp png_ptr);

png_uint_32 png_get_user _height_max (png_const_structp png_ptr);

png_voidp png_get_user_transform_ptr (png_const_structp png_ptr);

png_uint_32 png_get_user_width_max (png_const_structp png_ptr);

png_uint_32 png_get valid (png_const_structp png_ptr, png_const_infop info_ptr, png_uint_32 flag);
float png_get x_offset_inches (png_const_structp png_ptr, png_const_infop info_ptr);

png_fixed_point png_get_x_offset_inches fixed (png_structp png_ptr, png_const_infop info_ptr);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_int_32 png get x offset_microns (png_const_structp png_ptr, png_const_infop info_ptr);
png_int_32 png_get x offset_pixels (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get_x_pixels per_inch (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get x_pixels per_meter (png_const_structp png_ptr, png_const_infop info_ptr);
float png_get_y offset_inches (png_const_structp png_ptr, png_const_infop info_ptr);
png_fixed_point png_get y offset_inches fixed (png_structp png_ptr, png_const_infop info_ptr);
png_int_32 png_get_y offset_microns (png_const_structp png_ptr, png_const_infop info_ptr);
png_int_32 png_get y offset_pixels (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png_get_y pixels per_inch (png_const_structp png_ptr, png_const_infop info_ptr);
png_uint_32 png get y pixels per_meter (png_const_structp png_ptr, png_const_infop info_ptr);
int png_handle_as unknown (png_structp png_ptr, png_bytep chunk_name);

int png_image_begin_read_from_file (png_imagep image, const char *file_name);

int png_image begin_read_from_stdio (png_imagep image, FILE* file);

int, png_image begin_read _from_memory (png_imagep image, png_const_voidp memory, size t
size);

int png_image finish_read (png_imagep image, png_color p background, void *buffer, png_int_32
row_stride, void * colormap);

void png_image _free (png_imagep image);

int png_image write to file (png_imagep image, const char *file, int convert_to 8hit, const void
*puffer, png_int_32 row_stride, void * colormap);

int png_image write_to_memory (png_imagep image, void *memory, png_alloc_size t *

PNG_RESTRICT memory_bytes, int convert_to_8 hit, const void *buffer, png_int_32 row_stride,
const void *colormap);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

int png_image write to_stdio (png_imagep image, FILE *file, int convert_to 8 bit, const void
*buffer, png_int_32 row_stride, void * colormap);

void png_info_init_3 (png_infopp info_ptr, size t png_info_struct_size);

void png_init_io (png_structp png_ptr, FILE *fp);

void png_longjmp (png_structp png_ptr, int val);

png_voidp png_malloc (png_structp png_ptr, png_alloc_size t size);

png_voidp png_malloc_default (png_structp png_ptr, png_alloc_size t size);

png_voidp png_malloc_warn (png_structp png_ptr, png_alloc_size t size);

png_uint_32 png_permit_mng_features (png_structp png_ptr, png_uint_32 mng_features_per mitted);

void png_process data (png_structp png_ptr, png_infop info_ptr, png_bytep buffer, size t
buffer_size);

size t png_process_data_pause (png_structp png_ptr, int save);

png_uint_32 png_process data_skip (png_structp png_ptr);

void png_progressive_combine_row (png_structp png_ptr, png_bytep old_row, png_bytep new_row);
void png_read_end (png_structp png_ptr, png_infop info_ptr);

void png_read_image (png_structp png_ptr, png_bytepp image);

void png_read_info (png_structp png_ptr, png_infop info_ptr);

void png_read_png (png_structp png_ptr, png_infop info_ptr, int transforms, png_voidp params);
void png_read_row (png_structp png_ptr, png_bytep row, png_bytep display row);

void png_read_rows (png_structp png_ptr, png_bytepp row, png_bytepp display row, png_uint_32
num_rows);

void png_read_update_info (png_structp png_ptr, png_infop info_ptr);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

int png_reset_zstream (png_structp png_ptr);

void png_save int_32 (png_bytep buf, png_int_321);

void png_save_uint_16 (png_bytep buf, unsigned int i);

void png_save uint_32 (png_bytep buf, png_uint_321);

void png_set_add_alpha (png_structp png_ptr, png_uint_32filler, int flags);

void png_set_alpha _mode (png_structp png_ptr, int mode, double output_gamma);

void png_set_alpha_maode fixed (png_structp png_ptr, int mode, png_fixed_point output_gamma);

void png_set_background (png_structp png_ptr, png_color_16p background_color, int
background_gamma_code, int need_expand, double background_gamma);

void png_set_background_fixed (png_structp png_ptr, png_color_16p background color, int
background _gamma_code, int need_expand, png_uint_32 background gamma);

void png_set_benign_errors(png_structp png_ptr, int allowed);

void png_set_bgr (png_structp png_ptr);

void png_set_ bKGD (png_structp png_ptr, png_infop info_ptr, png_color_16p background);
void png_set_check for_invalid_index (png_structrp png_ptr, int allowed);

void png_set_ cHRM (png_structp png_ptr, png_infop info_ptr, double white_x, double white_y,
doublered x, doublered y, double green x, double green y, double blue_x, double blue y);

void png_set_ cHRM _fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32 white_x,
png_uint_32 white y, png_uint_32red x, png_uint_32red_y, png_uint_32 green_x, png_uint_32
green_y, png_uint_32 blue x, png_uint_32 blue y);

void png_set cHRM_XYZ (png_structp png_ptr, png_infop info_ptr, doublered X, doublered Y,
doublered Z, doublegreen X, double green Y, doublegreen Z, double blue X, doubleblue Y,
double blue_z);

void png_set_ cHRM _XYZ_fixed (png_structp png_ptr, png_infop info_ptr, png_fixed_point

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

int_red X, png_fixed_pointint_red Y, png_fixed pointint_red Z, png_fixed_point int_green X,
png_fixed_point int_green_ Y, png_fixed_point int_green Z, png_fixed_point int_blue X,
png_fixed_point int_blue Y, png_fixed_point int_blue 2);

void png_set_chunk_cache_max (png_structp png_ptr, png_uint_32 user_chunk_cache max);
void png_set_compression_level (png_structp png_ptr, int level);

void png_set_compression_mem_level (png_structp png_ptr, int mem level);

void png_set_compression_method (png_structp png_ptr, int method);

void png_set_compression_strategy (png_structp png_ptr, int strategy);

void png_set_compression_window_bits (png_structp png_ptr, int window_bits);

void png_set_crc_action (png_structp png_ptr, int crit_action, int ancil_action);

void png_set_error_fn (png_structp png_ptr, png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);

void png_set_expand (png_structp png_ptr);

void png_set_expand_16 (png_structp png_ptr);

void png_set_filler (png_structp png_ptr, png_uint_32 filler, int flags);
void png_set_filter (png_structp png_ptr, int method, int filters);

void png_set_filter_heuristics (png_structp png_ptr, int heuristic_method, int num_weights,
png_doublep filter_weights, png_doublep filter_costs);

void png_set_filter_heuristics fixed (png_structp png_ptr, int heuristic_method, int num_weights,
png_fixed_point_p filter_weights, png_fixed _point_p filter_costs);

void png_set_flush (png_structp png_ptr, int nrows);

void png_set_gamma (png_structp png_ptr, double screen_gamma, double default_file_gamma);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

void png_set_gamma_fixed (png_structp png_ptr, png_uint_32 screen_gamma, png_uint_32
default_file_ gamma);

void png_set gAMA (png_structp png_ptr, png_infop info_ptr, double file_ gamma);

void png_set_ gAMA_fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32 file_gamma);
void png_set_gray to rgb (png_structp png_ptr);

void png_set_eXIf (png_structp png_ptr, png_infop info_ptr, png_bytep exif);

void png_set_eXIf_1 (png_structp png_ptr, png_infop info_ptr, png_uint_32 num_exif, png_bytep
exif);

void png_set_hIST (png_structp png_ptr, png_infop info_ptr, png_uint_16p hist);

void png_set_iCCP (png_structp png_ptr, png_infop info_ptr, png_const_charp name, int
compression_type, png_const_bytep profile, png_uint_32 proflen);

int png_set_interlace_handling (png_structp png_ptr);

void png_set_invalid (png_structp png_ptr, png_infop info_ptr, int mask);
void png_set_invert_alpha (png_structp png_ptr);

void png_set_invert_mono (png_structp png_ptr);

void png_set_IHDR (png_structp png_ptr, png_infop info_ptr, png_uint_32 width, png_uint_32 height,
int bit_depth, int color_type, int interlace_type, int compression_type, int filter_type);

void png_set_keep_unknown_chunks (png_structp png_ptr, int keep, png_bytep chunk_list, int
num_chunks);

jmp_buf* png_set_longimp_fn (png_structp png_ptr, png_longjmp_ptr longimp_fn, size t
jmp_buf_size);

void png_set_chunk_malloc_max (png_structp png_ptr, png_alloc_size t user_chunk_cache max);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

void png_set_compression_buffer _size (png_structp png_ptr, png_uint_32 size);

void png_set_mem_fn (png_structp png_ptr, png_voidp mem ptr, png_malloc_ptr malloc_fn,
png_free ptr free fn);

void png_set_oFFs (png_structp png_ptr, png_infop info_ptr, png_uint_32 offset_x, png_uint_32
offset_y, int unit_type);

int png_set_option(png_structrp png_ptr, int option, int onoff);
void png_set_packing (png_structp png_ptr);

void png_set_packswap (png_structp png_ptr);

void png_set_palette to rgb (png_structp png_ptr);

void png_set_ pCAL (png_structp png_ptr, png_infop info_ptr, png_charp purpose, png_int_32 X0,
png_int_32 X1, int type, int nparams, png_char p units, png_charpp params);

void png_set_ pHYs(png_structp png_ptr, png_infop info_ptr, png_uint_32res x, png_uint_32res y,
int unit_type);

void png_set_progressive read_fn (png_structp png_ptr, png_voidp progressive_ptr,
png_progressive_info_ptr info_fn, png_progressive_row_ptr row_fn, png_progressive_end_ptr
end_fn);

void png_set PLTE (png_structp png_ptr, png_infop info_ptr, png_colorp palette, int num_palette);

void png_set_quantize (png_structp png_ptr, png_color p palette, int num_palette, int maximum_colors,
png_uint_16p histogram, int full_quantize);

void png_set_read_fn (png_structp png_ptr, png_voidp io_ptr, png_rw_ptr read_data_fn);
void png_set_read_status fn (png_structp png_ptr, png_read_status ptr read row_fn);

void png_set_read_user_chunk_fn (png_structp png_ptr, png_voidp user_chunk ptr,
png_user_chunk_ptr read user_chunk fn);

void png_set_read_user_transform_fn (png_structp png_ptr, png_user_transform_ptr
read_user_transform_fn);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

void png_set_rgb _to gray (png_structp png_ptr, int error_action, double red, double green);

void png_set_rgb_to gray fixed (png_structp png_ptr, int error_action png_uint_32 red, png_uint_32
green);

void png_set_rows (png_structp png_ptr, png_infop info_ptr, png_bytepp row_pointers);
void png_set_sBIT (png_structp png_ptr, png_infop info_ptr, png_color_8p sig_bit);
void png_set_ sCAL (png_structp png_ptr, png_infop info_ptr, int unit, double width, double height);

void png_set sCAL_fixed (png_structp png_ptr, png_infop info_ptr, int unit, png_fixed_point width,
png_fixed_point height);

void png_set_ sCAL _s(png_structp png_ptr, png_infop info_ptr, int unit, png_char p width, png_charp
height);

void png_set_scale 16 (png_structp png_ptr);
void png_set_shift (png_structp png_ptr, png_color_8p true_hits);
void png_set_sig_bytes (png_structp png_ptr, int num_bytes);

void png_set_sPL T (png_structp png_ptr, png_infop info_ptr, png_spalette p splt_ptr, int
num_spal ettes);

void png_set SRGB (png_structp png_ptr, png_infop info_ptr, int srgb_intent);

void png_set SRGB_gAMA_and_cHRM (png_structp png_ptr, png_infop info_ptr, int srgb_intent);
void png_set_strip_16 (png_structp png_ptr);

void png_set_strip_alpha (png_structp png_ptr);

void png_set_strip_error_numbers (png_structp png_ptr, png_uint_32 strip_mode);

void png_set_swap (png_structp png_ptr);

void png_set_swap_alpha (png_structp png_ptr);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

void png_set_text (png_structp png_ptr, png_infop info_ptr, png_textp text_ptr, int num_text);
void png_set_text_compression_level (png_structp png_ptr, int level);

void png_set_text_compression_mem_level (png_structp png_ptr, int mem_level);

void png_set_text_compression_strategy (png_structp png_ptr, int strategy);

void png_set_text_compression_window_bits (png_structp png_ptr, int window_bits);

void png_set_text_compression_method (png_structp png_ptr, int method);

void png_set_tIME (png_structp png_ptr, png_infop info_ptr, png_timep mod_time);

void png_set_tRNS (png_structp png_ptr, png_infop info_ptr, png_bytep trans alpha, int num_trans,
png_color_16p trans_color);

void png_set tRNS to alpha (png_structp png_ptr);

png_uint_32 png_set_unknown_chunks (png_structp png_ptr, png_infop info_ptr,
png_unknown_chunkp unknowns, int num, int location);

void png_set_unknown_chunk_location (png_structp png_ptr, png_infop info_ptr, int chunk, int
location);

void png_set_user_limits (png_structp png_ptr, png_uint_32 user_width_max, png_uint_32
user_height_max);

void png_set_user_transform_info (png_structp png_ptr, png_voidp user_transform ptr, int
user_transform_depth, int user_transform_channels);

void png_set_write_fn (png_structp png_ptr, png_voidp io_ptr, png_rw_ptr write data fn,
png_flush_ptr output_flush_fn);

void png_set_write status fn (png_structp png_ptr, png_write _status ptr write row_fn);

void png_set_write user_transform_fn (png_structp png_ptr, png_user_transform_ptr
write_user_transform_fn);

int png_sig_cmp (png_bytep sig, size t start, size t num_to_check);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

void png_start_read_image (png_structp png_ptr);
void png_warning (png_structp png_ptr, png_const_charp message);
void png_write_chunk (png_structp png_ptr, png_bytep chunk_name, png_bytep data, size t length);
void png_write_chunk_data (png_structp png_ptr, png_bytep data, size t length);
void png_write_chunk_end (png_structp png_ptr);
void png_write _chunk_start (png_structp png_ptr, png_bytep chunk _name, png_uint_32 length);
void png_write_end (png_structp png_ptr, png_infop info_ptr);
void png_write_flush (png_structp png_ptr);
void png_write_image (png_structp png_ptr, png_bytepp image);
void png_write_info (png_structp png_ptr, png_infop info_ptr);
void png_write_info_before PLTE (png_structp png_ptr, png_infop info_ptr);
void png_write_png (png_structp png_ptr, png_infop info_ptr, int transforms, png_voidp params);
void png_write_row (png_structp png_ptr, png_bytep row);
void png_write_rows (png_structp png_ptr, png_bytepp row, png_uint_32 num_rows);
void png_write_sig (png_structp png_ptr);
DESCRIPTION
The libpng library supports encoding, decoding, and various manipulations of the Portable Network

Graphics (PNG) format image files. It usesthe Zib(3) compression library. Following isacopy of the
libpng-manual .txt file that accompanies libpng.

LIBPNG.TXT
libpng-manual .txt - A description on how to use and modify libpng

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Copyright (c) 2018-2023 Cosmin Truta
Copyright (c) 1998-2018 Glenn Randers-Pehrson

This document is released under the libpng license.
For conditions of distribution and use, see the disclaimer
and licensein png.h

Based on:

libpng version 1.6.36, December 2018, through 1.6.40 - June 2023
Updated and distributed by Cosmin Truta
Copyright (c) 2018-2023 Cosmin Truta

libpng versions 0.97, January 1998, through 1.6.35 - July 2018
Updated and distributed by Glenn Randers-Pehrson
Copyright (c) 1998-2018 Glenn Randers-Pehrson

libpng 1.0 beta 6 - version 0.96 - May 28, 1997
Updated and distributed by Andreas Dilger
Copyright (c) 1996, 1997 Andreas Dilger

libpng 1.0 beta 2 - version 0.88 - January 26, 1996
For conditions of distribution and use, see copyright
notice in png.h. Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.

Updated/rewritten per request in the libpng FAQ
Copyright (c) 1995, 1996 Frank J. T. Wojcik
December 18, 1995 & January 20, 1996

TABLE OF CONTENTS

I Introduction
I1. Structures
I11. Reading
V. Writing
V. Simplified API
V1. Modifying/Customizing libpng
VII. MNG support
VIIl. Changesto Libpng from version 0.88

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

IX. Changesto Libpng from version 1.0.x to 1.2.x
X. Changesto Libpng from version 1.0.x/1.2.x to 1.4.x
XI. Changesto Libpng from version 1.4.x to 1.5.x
XI1. Changesto Libpng from version 1.5.x to 1.6.x
XII1. Detecting libpng
XI1V. Source code repository
XV. Coding style

[. Introduction
Thisfile describes how to use and modify the PNG reference library (known as libpng) for your own
use. Inaddition to thisfile, example.c is agood starting point for using the library, asit is heavily
commented and should include everything most people will need. We assume that libpng is already
installed; see the INSTALL file for instructions on how to configure and install libpng.

For examples of libpng usage, see the files "example.c", "pngtest.c”, and the filesin the "contrib"
directory, al of which are included in the libpng distribution.

Libpng was written as a companion to the PNG specification, as away of reducing the amount of time
and effort it takes to support the PNG file format in application programs.

The PNG specification (second edition), November 2003, is available as a W3C Recommendation and
as an SO Standard (1SO/IEC 15948:2004 (E)) at <https://www.w3.org/TR/2003/REC-
PNG-20031110/>. The W3C and I SO documents have identical technical content.

The PNG-1.2 specification is available at <https://png-mng.sourceforge.io/pub/png/spec/1.2/>. Itis
technically equivalent to the PNG specification (second edition) but has some additional material.

The PNG-1.0 specification is available as RFC 2083 at <https://png-
mng.sourceforge.io/pub/png/spec/1.0/> and as a W3C Recommendation at
<https://www.w3.org/TR/REC-png-961001>.

Some additional chunks are described in the special-purpose public chunks documents at
<http://www.libpng.org/pub/png/spec/register/>

Other information about PNG, and the latest version of libpng, can be found at the PNG home page,
<http://www.libpng.org/pub/png/>.

Most users will not have to modify the library significantly; advanced users may want to modify it
more. All attempts were made to make it as complete as possible, while keeping the code easy to

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

understand. Currently, thislibrary only supports C. Support for other languages is being considered.

Libpng has been designed to handle multiple sessions at one time, to be easily modifiable, to be
portable to the vast mgjority of machines (ANSI, K&R, 16-, 32-, and 64-bit) available, and to be easy
touse. The ultimate goal of libpng is to promote the acceptance of the PNG file format in whatever
way possible. Whilethereisstill work to be done (see the TODO file), libpng should cover the
majority of the needs of its users.

Libpng uses zlib for its compression and decompression of PNG files. Further information about zlib,
and the latest version of zlib, can be found at the zlib home page, <https://zlib.net/>. The zZlib
compression utility isageneral purpose utility that is useful for more than PNG files, and can be used
without libpng. See the documentation delivered with zlib for more details. Y ou can usually find the
source filesfor the zlib utility wherever you find the libpng source files.

Libpng isthread safe, provided the threads are using different instances of the structures. Each thread
should have its own png_struct and png_info instances, and thus its own image. Libpng does not
protect itself against two threads using the same instance of a structure.

[l. Structures
There are two main structures that are important to libpng, png_struct and png_info. Both are internal
structures that are no longer exposed in the libpng interface (as of libpng 1.5.0).

The png_info structure is designed to provide information about the PNG file. At onetime, thefields
of png_info were intended to be directly accessible to the user. However, this tended to cause
problems with applications using dynamically loaded libraries, and as aresult a set of interface
functions for png_info (the png_get *() and png_set_*() functions) was developed, and direct accessto
the png_info fields was deprecated..

The png_struct structure is the object used by the library to decode asingleimage. Asof 1.5.0 this
structureis also not exposed.

Almost all libpng APIsrequire a pointer to a png_struct as the first argument. Many (in particular the
png_set and png_get APIs) also require a pointer to png_info as the second argument. Some
application visible macros defined in png.h designed for basic data access (reading and writing integers
in the PNG format) don’'t take a png_info pointer, but it’s almost always safe to assume that a
(png_struct*) hasto be passed to call an API function.

Y ou can have more than one png_info structure associated with an image, as illustrated in pngtest.c,
one for information valid prior to the IDAT chunks and another (called "end_info" below) for things

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

after them.

The png.h header file is an invaluable reference for programming with libpng. And while I’ m on the
topic, make sure you include the libpng header file:

#include <png.h>
and also (as of libpng-1.5.0) the zlib header file, if you need it:

#include <zlib.h>

Types
The png.h header file defines a number of integral types used by the APIs. Most of these are fairly
obvious; for example types corresponding to integers of particular sizes and types for passing color
values.

One exception is how non-integral numbers are handled. For application convenience most APIs that
take such numbers have C (double) arguments; however, internally PNG, and libpng, use 32 bit signed
integers and encode the value by multiplying by 100,000. As of libpng 1.5.0 a convenience macro
PNG_FP_1 isdefined in png.h along with atype (png_fixed_point) which issimply (png_int_32).

All APIsthat take (double) arguments also have a matching API that takes the corresponding fixed
point integer arguments. The fixed point API has the same name as the floating point one with

" fixed" appended. The actual range of values permitted in the APIs isfrequently less than the full
range of (png_fixed point) (-21474 to +21474). When APIs require a non-negative argument the type
isrecorded as png_uint_32 above. Consult the header file and the text below for more information.

Special care must be take with SCAL chunk handling because the chunk itself uses non-integral values
encoded as strings containing decimal floating point numbers. See the commentsin the header file.

Configuration
The main header file function declarations are frequently protected by C preprocessing directives of the
form:

#fdef PNG_feature SUPPORTED

declare-function
#endif

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

#ifdef PNG_feature SUPPORTED
use-function
#endif

The library can be built without support for these APIs, although a standard build will have all
implemented APIs. Application programs should check the feature macros before using an API for
maximum portability. From libpng 1.5.0 the feature macros set during the build of libpng are recorded
in the header file "pnglibconf.h" and thisfile is always included by png.h.

If you don’t need to change the library configuration from the default, skip to the next section
("Reading").

Notice that some of the makefilesin the scripts’ directory and (in 1.5.0) all of the build project filesin
the’projects’ directory simply copy scripts/pnglibconf.h.prebuilt to pnglibconf.h. This means that
these build systems do not permit easy auto-configuration of the library - they only support the default
configuration.

The easiest way to make minor changesto the libpng configuration when auto-configuration is
supported is to add definitions to the command line using (typically) CPPFLAGS. For example:

CPPFLAGS=-DPNG_NO_FLOATING_ARITHMETIC

will change the internal libpng math implementation for gamma correction and other arithmetic
calculations to fixed point, avoiding the need for fast floating point support. The result can be seenin
the generated pnglibconf.h - make sure it contains the changed feature macro setting.

If you need to make more extensive configuration changes - more than one or two feature macro
settings - you can either add -DPNG_USER_CONFIG to the build command line and put alist of
feature macro settings in pngusr.h or you can set DFA_XTRA (a makefile variable) to afile containing
the same information in the form of ’option’ settings.

A. Changing pnglibconf.h

A variety of methods exist to build libpng. Not all of these support reconfiguration of pnglibconf.h.
To reconfigure pnglibconf.h it must either be rebuilt from scripts/pnglibconf.dfa using awk or it must
be edited by hand.

Hand editing is achieved by copying scripts/pnglibconf.h.prebuilt to pnglibconf.h and changing the

lines defining the supported features, paying very close attention to the option’ information in
scripts/pnglibconf.dfa that describes those features and their requirements. Thisis easy to get wrong.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

B. Configuration using DFA_XTRA

Rebuilding from pnglibconf.dfais easy if afunctioning "awk’, or alater variant such as’nawk’ or
"gawk’, isavailable. The configure build will automatically find an appropriate awk and build
pnglibconf.h. The scripts/pnglibconf.mak file contains a set of make rules for doing the same thing if
configure is not used, and many of the makefilesin the scripts directory use this approach.

When rebuilding simply write a new file containing changed options and set DFA_XTRA to the name
of thisfile. This causes the build to append the new file to the end of scripts/pnglibconf.dfa. The
pngusr.dfafile should contain lines of the following forms:

everything = off

Thisturns all optional features off. Includeit at the start of pngusr.dfato make it easier to build a
minimal configuration. Y ou will need to turn at least some features on afterward to enable either
reading or writing code, or both.

option feature on option feature off

Enable or disable asingle feature. Thiswill automatically enable other features required by afeature
that is turned on or disable other features that require afeature which is turned off. Conflicting settings
will cause an error message to be emitted by awk.

setting feature default value

Changes the default value of setting 'feature’ to’value’. There are asmall number of settings listed at
the top of pnglibconf.h, they are documented in the source code. Most of these values have
performance implications for the library but most of them have no visible effect on the API. Some can

also be overridden from the API.

This method of building a customized pnglibconf.h isillustrated in contrib/pngminim/*. See the
"$(PNGCONF):" target in the makefile and pngusr.dfain these directories.

C. Configuration using PNG_USER_CONFIG
If -DPNG_USER_CONFIG is added to the CPPFLAGS when pnglibconf.h is built, the file pngusr.h
will automatically be included before the options in scripts/pnglibconf.dfa are processed. Y our

pngusr.h file should contain only macro definitions turning features on or off or setting settings.

Apart from the global setting "everything = off" all the options listed above can be set using macrosin

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

pngusr.h:

#define PNG_feature SUPPORTED
is equivalent to:

option feature on

#define PNG_NO _feature
isequivaent to:

option feature off

#define PNG_feature value
isequivaent to:

setting feature default value

Notice that in both cases, pngusr.dfa and pngusr.h, the contents of the pngusr file you supply override
the contents of scripts/pnglibconf.dfa

If confusing or incomprehensible behavior resultsit is possible to examine the intermediate file
pnglibconf.dfn to find the full set of dependency information for each setting and option. Simply
locate the feature in the file and read the C comments that precedeit.

This method is also illustrated in the contrib/pngminim/* makefiles and pngusr.h.

Reading

We'll now walk you through the possible functions to call when reading in a PNG file sequentialy,
briefly explaining the syntax and purpose of each one. See example.c and png.h for more detail.
While progressive reading is covered in the next section, you will still need some of the functions
discussed in this section to read a PNG file.

Setup

Y ou will want to do the 1/O initialization(*) before you get into libpng, so if it doesn’t work, you don’t
have much to undo. Of course, you will also want to insure that you are, in fact, dealing with a PNG

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

file. Libpng provides asimple check to seeif afileisaPNG file. Touseit, passinthefirst 1to 8
bytes of the file to the function png_sig_cmp(), and it will return O (false) if the bytes match the
corresponding bytes of the PNG signature, or nonzero (true) otherwise. Of course, the more bytes you
passin, the greater the accuracy of the prediction.

If you are intending to keep the file pointer open for use in libpng, you must ensure you don't read
more than 8 bytes from the beginning of the file, and you also have to make acall to
png_set_sig_bytes() with the number of bytes you read from the beginning. Libpng will then only
check the bytes (if any) that your program didn’t read.

(*): If you are not using the standard /O functions, you will need to replace them with custom
functions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "rb");
if ('fp)
{

return ERROR,;

}

if (fread(header, 1, number, fp) = number)
{
return ERROR,;

}

is_png = !png_sig_cmp(header, 0, number);
if (lis_png)
{

return NOT_PNG;

}

Next, png_struct and png_info need to be alocated and initialized. In order to ensure that the size of
these structuresis correct even with adynamically linked libpng, there are functions to initialize and
alocate the structures. We also pass the library version, optional pointers to error handling functions,
and a pointer to a data struct for use by the error functions, if necessary (the pointer and functions can
be NULL if the default error handlers are to be used). See the section on Changes to Libpng below
regarding the old initialization functions. The structure allocation functions quietly return NULL if
they fail to create the structure, so your application should check for that.

png_structp png_ptr = png_create read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

user_error_fn, user_warning_fn);

if ('png_ptr)
return ERROR;

png_infop info_ptr = png_create_info_struct(png_ptr);

if (linfo_ptr)
{
png_destroy read struct(& png_ptr,
(png_infopp)NULL, (png_infopp)NULL);
return ERROR;

}

If you want to use your own memory allocation routines, use alibpng that was built with
PNG_USER_MEM_SUPPORTED defined, and use png_create read_struct_2() instead of
png_create read struct():

png_structp png_ptr = png_create read_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free fn);

The error handling routines passed to png_create read_struct() and the memory alloc/free routines
passed to png_create_struct_2() are only necessary if you are not using the libpng supplied error
handling and memory alloc/free functions.

When libpng encounters an error, it expects to longjmp back to your routine. Therefore, you will need
to call setjmp and pass your png_jmpbuf(png_ptr). If you read the file from different routines, you will
need to update the longjmp buffer every time you enter a new routine that will call apng_* () function.

See your documentation of setjmp/longjmp for your compiler for more information on setjmp/longjmp.
See the discussion on libpng error handling in the Customizing Libpng section below for more
information on the libpng error handling. If an error occurs, and libpng longjmp’s back to your setjmp,
you will want to call png_destroy read struct() to free any memory.

if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_read_struct(& png_ptr, &info_ptr,
&end_info);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

fclose(fp);
return ERROR;
}

Pass (png_infopp)NULL instead of &end_info if you didn’t create an end_info structure.

If you would rather avoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_NO_SETJMP, in which case errors will result in acall to PNG_ABORT() which defaultsto
abort().

Y ou can #define PNG_ABORT)() to a function that does something more useful than abort(), aslong as
your function does not return.

Now you need to set up theinput code. The default for libpng is to use the C function fread(). If you
use this, you will need to passavalid FILE * in the function png_init_io(). Be surethat thefileis
opened in binary mode. If you wish to handle reading data in another way, you need not call the
png_init_io() function, but you must then implement the libpng 1/0 methods discussed in the
Customizing Libpng section below.

png_init_io(png_ptr, fp);
If you had previously opened the file and read any of the signature from the beginning in order to see if

thiswas a PNG file, you need to let libpng know that there are some bytes missing from the start of the
file.

png_set sig bytes(png_ptr, number);
Y ou can change the zlib compression buffer size to be used while reading compressed data with
png_set_compression_buffer_size(png_ptr, buffer_size);

where the default sizeis 8192 bytes. Note that the buffer size is changed immediately and the buffer is
reallocated immediately, instead of setting a flag to be acted upon later.

If you want CRC errorsto be handled in a different manner than the default, use
png_set_crc_action(png_ptr, crit_action, ancil_action);

The values for png_set_crc_action() say how libpng isto handle CRC errorsin ancillary and critical
chunks, and whether to use the data contained therein. Starting with libpng-1.6.26, this also governs

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

how an ADLER32 error is handled while reading the IDAT chunk. Note that it isimpossible to
"discard" datain acritical chunk.

Choicesfor (int) crit_action are
PNG_CRC DEFAULT 0 error/quit
PNG_CRC_ERROR_QUIT 1 error/quit
PNG_CRC WARN_USE 3 warn/use data
PNG_CRC QUIET_USE 4 quiet/use data
PNG_CRC _NO _CHANGE 5 usethecurrent value

Choicesfor (int) ancil_action are
PNG_CRC DEFAULT 0 error/quit
PNG_CRC_ERROR_QUIT 1 error/quit
PNG_CRC_WARN_DISCARD 2 warn/discard data
PNG_CRC WARN_USE 3 warn/use data
PNG_CRC QUIET_USE 4 quiet/use data
PNG_CRC _NO_CHANGE 5 usethecurrent value

When the setting for crit_action isPNG_CRC_QUIET _USE, the CRC and ADLER32 checksums are
not only ignored, but they are not evaluated.

Setting up callback code
Y ou can set up acalback function to handle any unknown chunks in the input stream. Y ou must
supply the function

read _chunk_callback(png_structp png_ptr,
png_unknown_chunkp chunk);
{
/* The unknown chunk structure contains your
chunk data, along with similar data for any other
unknown chunks: */

png_byte name[5];
png_byte *data;

size tsize,

/* Note that libpng has already taken care of
the CRC handling */

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

/* put your code here. Search for your chunk in the
unknown chunk structure, process it, and return one
of the following: */

return -n; /* chunk had an error */
return O; /* did not recognize */
return n; /* success */

}

(Y ou can give your function another name that you like instead of "read_chunk_callback™)
To inform libpng about your function, use

png_set read user_chunk_fn(png_ptr, user_chunk_ptr,
read_chunk_callback);

This names not only the callback function, but also a user pointer that you can retrieve with

png_get_user_chunk_ptr(png_ptr);

If you call the png_set_read user_chunk_fn() function, then all unknown chunks which the callback
does not handle will be saved when read. Y ou can cause them to be discarded by returning’ 1’
("handled") instead of '0". This behavior will changein libpng 1.7 and the default handling set by the
png_set_keep_unknown_chunks() function, described below, will be used when the callback returns O.
If you want the existing behavior you should set the global default to

PNG_HANDLE CHUNK_IF_SAFE now; thisis compatible with al current versions of libpng and
with 1.7. Libpng 1.6 issues awarning if you keep the default, or PNG_ HANDLE CHUNK_NEVER,
and the callback returns O.

At this point, you can set up a callback function that will be called after each row has been read, which
you can use to control a progress meter or the like. 1t's demonstrated in pngtest.c. Y ou must supply a
function

void read row_callback(png_structp png_ptr,
png_uint_32 row, int pass);

{

/* put your code here */

}

(You can give it another name that you like instead of "read row_callback")

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

To inform libpng about your function, use
png_set read status fn(png_ptr, read row_callback);

When this function is called the row has already been completely processed and the 'row’ and ’ pass
refer to the next row to be handled. For the non-interlaced case the row that was just handled is simply
one less than the passed in row number, and pass will aways be 0. For the interlaced case the same
applies unless the row value is O, in which case the row just handled was the last one from one of the
preceding passes. Because interlacing may skip a pass you cannot be sure that the preceding passis
just 'pass-1'; if you really need to know what the last pass is record (row,pass) from the callback and
use the last recorded value each time.

Aswith the user transform you can find the output row using the PNG_ROW_FROM_PASS ROW
macro.

Unknown-chunk handling
Now you get to set the way the library processes unknown chunks in the input PNG stream. Both
known and unknown chunks will be read. Normal behavior is that known chunks will be parsed into
information in various info_ptr members while unknown chunks will be discarded. This behavior can
be wasteful if your application will never use some known chunk types. To change this, you can call:

png_set_keep_unknown_chunks(png_ptr, keep,
chunk_list, num_chunks);

keep - 0: default unknown chunk handling
1: ignore; do not keep
2: keep only if safe-to-copy
3: keep even if unsafe-to-copy

Y ou can use these definitions:
PNG_HANDLE _CHUNK_AS DEFAULT 0
PNG_HANDLE CHUNK_NEVER 1
PNG HANDLE CHUNK_IF SAFE 2
PNG HANDLE CHUNK_ALWAYS 3

chunk_list - list of chunks affected (a byte string,
five bytes per chunk, NULL or’ ’ if
num_chunksis positive; ignored if
numchunks <= 0).

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

num_chunks - number of chunks affected; if O, all
unknown chunks are affected. If positive,
only the chunksin the list are affected,
and if negative all unknown chunks and
al known chunks except for the IHDR,
PLTE, tRNS, IDAT, and IEND chunks are
affected.

Unknown chunks declared in this way will be saved as raw data onto alist of png_unknown_chunk
structures. If achunk that is normally known to libpng is named in the list, it will be handled as
unknown, according to the "keep" directive. If achunk is named in successive instances of

png_set keep unknown_chunks(), the final instance will take precedence. The IHDR and IEND
chunks should not be named in chunk_list; if they are, libpng will process them normally anyway. If
you know that your application will never make use of some particular chunks, use
PNG_HANDLE_CHUNK_NEVER (or 1) as demonstrated below.

Here is an example of the usage of png_set keep unknown_chunks(), where the private "vpAg" chunk
will later be processed by a user chunk callback function:

png_byte vpAg[5]={ 118, 112, 65, 103, (png_byte) ' '};

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
png_byte unused_chunkg[]=

{
104, 73, 83, 84, (png_byte)’ ', /* hIST */
105, 84, 88, 116, (png_byte) ' ', /* iTXt*/
112, 67, 65, 76, (png_byte) ' ’, /* pCAL */
115, 67, 65, 76, (png_byte) ' ', /* sCAL */
115, 80, 76, 84, (png_byte) ' ', /[* sPLT */
116, 73, 77, 69, (png_byte) ' ’, /* tIME*/
¥

#endif

#f defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
* ignore al unknown chunks
* (use global setting "2" for libpng16 and earlier):
*/
png_set_keep_unknown_chunks(read_ptr, 2, NULL, 0);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

I* except for vpAg: */
png_set keep unknown_chunks(read_ptr, 2, vpAg, 1);

/* aso ignore unused known chunks: */
png_set_keep unknown_chunks(read_ptr, 1, unused_chunks,
(int)(sizeof unused_chunks)/5);
#endif

User limits
The PNG specification allows the width and height of an image to be aslarge as 2°(31-1 (Ox7fffffff), or
about 2.147 billion rows and columns. For safety, libpng imposes a default limit of 1 million rows and
columns. Larger imageswill be rgjected immediately with a png_error() call. If you wish to change
these limits, you can use

png_set user_limits(png_ptr, width_max, height_max);

to set your own limits (libpng may reject some very wide images anyway because of potential buffer
overflow conditions).

Y ou should put this statement after you create the PNG structure and before calling png_read_info(),
png_read _png(), or png_process_data().

When writing a PNG datastream, put this statement before calling png_write_info() or
png_write_png().

If you need to retrieve the limits that are being applied, use

width_max = png_get_user_width_max(png_ptr);
height_max = png_get_user_height_max(png_ptr);

The PNG specification sets no limit on the number of ancillary chunks allowed in a PNG datastream.
By default, libpng imposes a limit of atotal of 1000 sPLT, tEXt, iTXt, zTXt, and unknown chunks to
be stored. If you have set up both info_ptr and end_info_ptr, the limit applies separately to each. You
can change the limit on the total number of such chunks that will be stored, with

png_set_chunk_cache max(png_ptr, user_chunk_cache max);

where Ox7fffffffL means unlimited. Y ou can retrieve thislimit with

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

chunk_cache max = png_get_chunk_cache max(png_ptr);
Libpng imposes a limit of 8 Megabytes (8,000,000 bytes) on the amount of memory that any chunk
other than IDAT can occupy, originally or when decompressed (prior to libpng-1.6.32 the limit was
only applied to compressed chunks after decompression). Y ou can change this limit with

png_set chunk_malloc_max(png_ptr, user_chunk_malloc_max);
and you can retrieve the limit with

chunk_malloc_max = png_get _chunk_malloc_max(png_ptr);
Any chunks that would cause either of these limits to be exceeded will be ignored.

I nformation about your system

If you intend to display the PNG or to incorporate it in other image data you need to tell libpng
information about your display or drawing surface so that libpng can convert the values in the image to
match the display.
From libpng-1.5.4 thisinformation can be set before reading the PNG file header. In earlier versions
png_set_gamma() existed but behaved incorrectly if called before the PNG file header had been read

and png_set_alpha_mode() did not exist.

If you need to support versions prior to libpng-1.5.4 test the version number asillustrated below using
"PNG_LIBPNG_VER >= 10504" and follow the procedures described in the appropriate manual page.

Y ou give libpng the encoding expected by your system expressed as a’gamma value. Y ou can also

specify adefault encoding for the PNG file in case the required information is missing from the file.

By default libpng assumes that the PNG data matches your system, to keep this default call:
png_set_gamma(png_ptr, screen_gamma, output_gamma);

or you can use the fixed point equivalent:

png_set gamma fixed(png_ptr, PNG_FP_1*screen_gamma,
PNG_FP_1*output_gamma);

If you don’t know the gamma for your system it is probably 2.2 - a good approximation to the IEC
standard for display systems (SRGB). If images are too contrasty or washed out you got the value

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

wrong - check your system documentation!

Many systems permit the system gammato be changed via alookup table in the display driver, afew
systems, including older Macs, change the response by default. As of 1.5.4 three special values are
available to handle common situations:

PNG_DEFAULT_sSRGB: Indicates that the system conformsto the
IEC 61966-2-1 standard. This matches almost
al systems.

PNG_GAMMA_MAC _18: Indicates that the system is an older
(pre Mac OS 10.6) Apple Macintosh system with
the default settings.

PNG_GAMMA_LINEAR: Just the fixed point value for 1.0 - indicates
that the system expects data with no gamma
encoding.

Y ou would use the linear (unencoded) value if you need to process the pixel values further because this
avoids the need to decode and re-encode each component value whenever arithmetic is performed. A
lot of graphics software uses linear values for this reason, often with higher precision component
values to preserve overall accuracy.

The output_gamma value expresses how to decode the output values, not how they are encoded. The
values used correspond to the normal numbers used to describe the overall gamma of a computer
display system; for example 2.2 for an SRGB conformant system. The values are scaled by 100000 in
the _fixed version of the API (so 220000 for SRGB.)

Theinverse of the value is always used to provide a default for the PNG file encoding if it hasno
gAMA chunk and if png_set_gamma() has not been called to override the PNG gamma information.

When the ALPHA_OPTIMIZED mode is selected the output gammais used to encode opaque pixels
however pixels with lower alphavalues are not encoded, regardless of the output gamma setting.

When the standard Porter Duff handling is requested with mode 1 the output encoding is set to be
linear and the output_gamma value is only relevant as a default for input data that has no gamma
information. The linear output encoding will be overridden if png_set_gamma() is called - the results
may be highly unexpected!

The following numbers are derived from the SRGB standard and the research behind it. SRGB is
defined to be approximated by a PNG gAMA chunk value of 0.45455 (1/2.2) for PNG. Thevalue

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

implicitly includes any viewing correction required to take account of any differencesin the color
environment of the original scene and the intended display environment; the value expresses how to
decode the image for display, not how the original data was * encoded*.

SRGB provides apeg for the PNG standard by defining a viewing environment. sRGB itself, and
earlier TV standards, actually use a more complex transform (alinear portion then a gamma 2.4 power
law) than PNG can express. (PNG islimited to simple power laws.) By saying that an image for direct
display on an sSRGB conformant system should be stored with agAMA chunk value of 45455 (11.3.3.2
and 11.3.3.5 of the SO PNG specification) the PNG specification makes it possible to derive values for
other display systems and environments.

The Mac value is deduced from the SRGB based on an assumption that the actual extra viewing
correction used in early Mac display systems was implemented as a power 1.45 lookup table.

Any system where a programmabl e lookup table is used or where the behavior of the fina display
device characteristics can be changed requires system specific code to obtain the current characteristic.
However this can be difficult and most PNG gamma correction only requires an approximate value.

By default, if png_set apha mode() is not called, libpng assumes that all values are unencoded, linear,
values and that the output device also has alinear characteristic. Thisisonly very rarely correct - itis
invariably better to call png_set_apha_mode() with PNG_DEFAULT_sRGB than rely on the default if
you don't know what the right answer is!

The special value PNG_GAMMA_MAC_18 indicates an older Mac system (pre Mac OS 10.6) which
used a correction table to implement a somewhat lower gamma on an otherwise sSRGB system.

Both these values are reserved (not simple gamma values) in order to allow more precise correction
internally in the future.

NOTE: the values can be passed to either the fixed or floating point APIs, but the floating point API
will also accept floating point values.

The second thing you may need to tell libpng about is how your system handles a pha channel
information. Some, but not al, PNG files contain an apha channel. To display these files correctly
you need to compose the data onto a suitable background, as described in the PNG specification.

Libpng only supports composing onto a single color (using png_set_background; see below).

Otherwise you must do the composition yourself and, in this case, you may need to call
png_set_apha mode:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

#if PNG_LIBPNG_VER >= 10504

png_set alpha mode(png_ptr, mode, screen_gamma);
#else

png_set gamma(png_ptr, screen_gamma, 1.0/screen_gammal);
#endif

The screen_gamma value is the same as the argument to png_set_gamma; however, how it affects the
output depends on the mode. png_set_apha_mode() sets the file gamma default to 1/screen_gamma,

so hormally you don’'t need to call png_set gamma. If you need different defaults call

png_set gamma() before png_set_alpha mode() - if you call it after it will override the settings made
by png_set_alpha_mode().

The modeis as follows:

PNG_ALPHA_PNG: The datais encoded according to the PNG specification. Red, green and blue,
or gray, components are gamma encoded color values and are not premultiplied by the alpha value.
The aphavalue is alinear measure of the contribution of the pixel to the corresponding final output
pixel.

Y ou should normally use this format if you intend to perform color correction on the color values;
most, maybe all, color correction software has no handling for the alpha channel and, anyway, the math
to handle pre-multiplied component values is unnecessarily complex.

Before you do any arithmetic on the component values you need to remove the gamma encoding and
multiply out the alpha channel. See the PNG specification for more detail. It isimportant to note that
when an image with an alpha channel is scaled, linear encoded, pre-multiplied component values must
be used!

The remaining modes assume you don’t need to do any further color correction or that if you do, your
color correction software knows all about alpha (it probably doesn’t!). They ’associate’ the alphawith
the color information by storing color channel values that have been scaled by the alpha. The
advantage is that the color channels can be resampled (the image can be scaled) in thisform. The
disadvantage is that normal practice isto store linear, not (gamma) encoded, values and this requires
16-bit channels for still images rather than the 8-bit channels that are just about sufficient if gamma
encoding is used. In addition al non-transparent pixel values, including completely opague ones, must
be gamma encoded to produce the final image. These arethe’ STANDARD’, 'ASSOCIATED’ or
"PREMULTIPLIED’ modes described below (the latter being the two common names for associated
alpha color channels). Note that PNG files always contain non-associated color channels;
png_set_alpha_mode() with one of the modes causes the decoder to convert the pixels to an associated
form before returning them to your application.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Sinceit is not necessary to perform arithmetic on opague color values so long as they are not to be
resampled and are in the final color space it is possible to optimize the handling of alphaby storing the
opaque pixelsin the PNG format (adjusted for the output color space) while storing partialy opaque
pixelsin the standard, linear, format. The accuracy required for standard alpha composition is
relatively low, because the pixels are isolated, therefore typically the accuracy loss in storing 8-bit
linear valuesis acceptable. (Thisis not trueif the apha channel is used to simulate transparency over
large areas - use 16 bits or the PNG mode in thiscase!) Thisisthe’ OPTIMIZED’ mode. For this
mode a pixel istreated as opagque only if the apha value is equal to the maximum value.

PNG_ALPHA_ STANDARD: The datalibpng produces is encoded in the standard way assumed by
most correctly written graphics software. The gamma encoding will be removed by libpng and the
linear component values will be pre-multiplied by the alpha channel.

With this format the final image must be re-encoded to match the display gamma before theimageis
displayed. If your system doesn’t do that, yet still seems to perform arithmetic on the pixels without
decoding them, it is broken - check out the modes below.

With PNG_ALPHA_STANDARD libpng always produces linear component values, whatever
screen_gammayou supply. The screen_gammavalue is, however, used as a default for the file gamma
if the PNG file has no gamma information.

If you call png_set_gamma() after png_set_alpha_mode() you will override the linear encoding.
Instead the pre-multiplied pixel values will be gamma encoded but the alpha channel will still be linear.
This may actually match the requirements of some broken software, but it is unlikely.

While linear 8-bit datais often used it hasinsufficient precision for any image with areasonable
dynamic range. To avoid problems, and if your software supportsit, use png_set_expand_16() to force
all componentsto 16 bits.

PNG_ALPHA_OPTIMIZED: Thismode isthe same as PNG_ALPHA_STANDARD except that
completely opague pixels are gamma encoded according to the screen_gammavalue. Pixels with apha
less than 1.0 will still have linear components.

Usethisformat if you have control over your compositing software and so don’t do other arithmetic
(such as scaling) on the data you get from libpng. Y our compositing software can simply copy opague

pixels to the output but still has linear values for the non-opague pixels.

In normal compositing, where the alpha channel encodes partial pixel coverage (as opposed to broad
area translucency), the inaccuracies of the 8-bit representation of non-opague pixels are irrelevant.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

You can also try thisformat if your software is broken; it might look better.

PNG_ALPHA BROKEN: ThisisPNG_ALPHA STANDARD; however, al component values,
including the alpha channel are gammaencoded. Thisis broken because, in practice, no
implementation that uses this choice correctly undoes the encoding before handling apha composition.
Usethis choice only if other serious errorsin the software or hardware you use mandate it. In most
cases of broken software or hardware the bug in the final display manifests as a subtle halo around
composited parts of theimage. Y ou may not even perceive this as a halo; the composited part of the
image may simply appear separate from the background, as though it had been cut out of paper and
pasted on afterward.

If you don’t have to deal with bugsin software or hardware, or if you can fix them, there are three
recommended ways of using png_set_alpha_mode():

png_set_apha mode(png_ptr, PNG_ALPHA_PNG,
screen_gamma);

Y ou can do color correction on the result (libpng does not currently support color correction
internally). When you handle the alpha channel you need to undo the gamma encoding and multiply
out the alpha.

png_set_apha_mode(png_ptr, PNG_ALPHA_STANDARD,
screen_gamma);
png_set_expand_16(png_ptr);

If you are using the high level interface, don’t call png_set_expand_16(); instead pass
PNG_TRANSFORM_EXPAND_16 to the interface.

With this mode you can’t do color correction, but you can do arithmetic, including composition and
scaling, on the data without further processing.

png_set_apha mode(png_ptr, PNG_ALPHA_OPTIMIZED,
screen_gamma);

Y ou can avoid the expansion to 16-bit components with this mode, but you lose the ability to scale the
image or perform other linear arithmetic. All you can do is compose the result onto a matching output.

Since this mode is libpng-specific you also need to write your own composition software.

The following are examples of callsto png_set_apha_mode to achieve the required overal gamma
correction and, where necessary, apha premultiplication.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_set alpha mode(pp, PNG_ALPHA_PNG, PNG_DEFAULT_sRGB);
Choicesfor the alpha_mode are

PNG_ALPHA_PNG 0 /* according to the PNG standard */
PNG_ALPHA_STANDARD 1 /* according to Porter/Duff */
PNG_ALPHA_ASSOCIATED 1/* asabove; thisisthe normal practice */
PNG_ALPHA PREMULTIPLIED 1 /* asabove*/

PNG_ALPHA_OPTIMIZED 2/* 'PNG’ for opaque pixels, else’ STANDARD’ */
PNG_ALPHA BROKEN 3 /* the alpha channel is gamma encoded */

PNG_ALPHA _PNG isthe default libpng handling of the alpha channel. It is not pre-multiplied into the
color components. In addition the call states that the output isfor a SRGB system and causes all PNG
files without gAMA chunks to be assumed to be encoded using SRGB.

png_set_alpha_mode(pp, PNG_ALPHA_PNG, PNG_GAMMA_MAC);

In this case the output is assumed to be something like an SRGB conformant display preceded by a
power-law lookup table of power 1.45. Thisishow early Mac systems behaved.

png_set_alpha_mode(pp, PNG_ALPHA_STANDARD, PNG_GAMMA_LINEARY;

Thisisthe classic Jim Blinn approach and will work in academic environments where everything is
done by the book. It has the shortcoming of assuming that input PNG data with no gamma information
islinear - thisis unlikely to be correct unless the PNG files were generated locally. Most of the time
the output precision will be so low as to show significant banding in dark areas of the image.

png_set_expand_16(pp);
png_set_alpha_ mode(pp, PNG_ALPHA_STANDARD, PNG_DEFAULT_SRGB);

Thisis asomewhat more realistic Jim Blinn inspired approach. PNG files are assumed to have the
SRGB encoding if not marked with a gamma value and the output is always 16 bits per component.
This permits accurate scaling and processing of the data. If you know that your input PNG files were
generated locally you might need to replace PNG_DEFAULT_sRGB with the correct value for your
system.

png_set_alpha_mode(pp, PNG_ALPHA_OPTIMIZED, PNG_DEFAULT_sRGB);

If you just need to composite the PNG image onto an existing background and if you control the code
that does this you can use the optimization setting. In this case you just copy completely opague pixels

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

to the output. For pixelsthat are not completely transparent (you just skip those) you do the
composition math using png_composite or png_composite 16 below then encode the resultant 8-bit or
16-bit values to match the output encoding.

Other cases

If neither the PNG nor the standard linear encoding work for you because of the software or hardware
you use then you have abig problem. The PNG case will probably result in halos around the image.
The linear encoding will probably result in awashed out, too bright, image (it’ s actually too contrasty.)
Try the ALPHA_OPTIMIZED mode above - this will probably substantially reduce the halos.
Alternatively try:

png_set_alpha_mode(pp, PNG_ALPHA_BROKEN, PNG_DEFAULT_SRGB);

This option will also reduce the halos, but there will be slight dark halos round the opaque parts of the
image where the background islight. Inthe OPTIMIZED mode the halos will be light halos where the
background is dark. Take your pick - the halos are unavoidable unless you can get your
hardware/software fixed! (The OPTIMIZED approach is dightly faster.)

When the default gamma of PNG files doesn’t match the output gamma. If you have PNG files with
no gamma information png_set_alpha_mode allows you to provide a default gamma, but it also setsthe
output gammato the matching value. If you know your PNG files have a gammathat doesn’t match
the output you can take advantage of the fact that png_set_alpha_mode always sets the output gamma
but only setsthe PNG default if it is not already set:

png_set alpha mode(pp, PNG_ALPHA_PNG, PNG_DEFAULT_sRGB);
png_set alpha mode(pp, PNG_ALPHA_PNG, PNG_ GAMMA_MACQ);

Thefirst call sets both the default and the output gamma values, the second call overrides the output
gamma without changing the default. Thisis easier than achieving the same effect with
png_set_gamma. You must use PNG_ALPHA_PNG for thefirst call - internal checkingin
png_set_aphawill fireif more than one call to png_set_alpha_mode and png_set_background is made
in the same read operation, however multiple callswith PNG_ALPHA_PNG are ignored.

If you don’t need, or can’'t handle, the alpha channel you can call png_set_background() to remove it
by compositing against afixed color. Don’t call png_set_strip_alpha() to do this - it will leave spurious

pixel valuesin transparent parts of thisimage.

png_set_background(png_ptr, & background_color,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

The background_color isan RGB or grayscal e value according to the data format libpng will produce
for you. Because you don’t yet know the format of the PNG file, if you call png_set background at
this point you must arrange for the format produced by libpng to always have 8-bit or 16-bit
components and then store the color as an 8-bit or 16-bit color as appropriate. The color contains
separate gray and RGB component values, so you can let libpng produce gray or RGB output according
to the input format, but low bit depth grayscale images must always be converted to at least 8-bit
format. (Even though low bit depth grayscal e images can’t have an alpha channel they can have a
transparent color!)

Y ou set the transforms you need later, either as flags to the high level interface or libpng API calls for
the low level interface. For reference the settings and API calls required are:

8-hit values;
PNG_TRANSFORM_SCALE_16 | PNG_EXPAND
png_set_expand(png_ptr); png_set_scale 16(png_ptr);

If you must get exactly the same inaccurate results

produced by default in versions prior to libpng-1.5.4,

use PNG_TRANSFORM_STRIP_16 and png_set_strip_16(png_ptr)
instead.

16-bit values:
PNG_TRANSFORM_EXPAND_16
png_set_expand_16(png_ptr);

In either case palette image data will be expanded to RGB. If you just want color datayou can add
PNG_TRANSFORM_GRAY_TO RGB or png_set_gray _to rgb(png_ptr) to thelist.

Calling png_set_background before the PNG file header is read will not work prior to libpng-1.5.4.
Because the failure may result in unexpected warnings or errorsit is therefore much safer to call
png_set_background after the head has been read. Unfortunately this means that prior to libpng-1.5.4 it
cannot be used with the high level interface.

The high-level read interface
At this point there are two ways to proceed; through the high-level read interface, or through a
sequence of low-level read operations. Y ou can use the high-level interface if (a) you are willing to
read the entire image into memory, and (b) the input transformations you want to do are limited to the
following set:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_TRANSFORM _IDENTITY No transformation
PNG_TRANSFORM_SCALE_16 Strip 16-bit samplesto
8-bit accurately
PNG_TRANSFORM_STRIP_16 Chop 16-bit samplesto
8-hit less accurately
PNG_TRANSFORM_STRIP_ALPHA Discard the alpha channel
PNG_TRANSFORM_PACKING Expand 1, 2 and 4-bit
samples to bytes
PNG_TRANSFORM_PACKSWAP Change order of packed
pixelsto LSB first
PNG_TRANSFORM_EXPAND Perform set_expand()
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixelsto the
SBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA
to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA
to AG
PNG_TRANSFORM_INVERT_ALPHA Change alphafrom opacity
to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_GRAY_TO_RGB Expand grayscale samples
to RGB (or GA to RGBA)
PNG_TRANSFORM_EXPAND_16 Expand samplesto 16 bits

(This excludes setting a background color, doing gamma transformation, quantizing, and setting filler.)
If thisisthe case, simply do this:

png_read png(png_ptr, info_ptr, png_transforms, NULL)
where png_transformsis an integer containing the bitwise OR of some set of transformation flags.
Thiscall isequivalent to png_read_info(), followed the set of transformations indicated by the

transform mask, then png_read_image(), and finally png_read end().

(The final parameter of this call is not yet used. Someday it might point to transformation parameters
required by some future input transform.)

Y ou must use png_transforms and not call any png_set_transform() functions when you use
png_read_png().

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

After you have called png_read png(), you can retrieve the image data with
row_pointers = png_get_rows(png_ptr, info_ptr);

where row_pointersis an array of pointersto the pixel datafor each row:
png_bytep row_pointerg height];

If you know your image size and pixel size ahead of time, you can alocate row_pointers prior to
calling png_read png() with

if (height > PNG_UINT_32 MAX/(sizeof (png_byte)))

png_error (png_ptr,
"Image istoo tall to processin memory");

if (width>PNG_UINT_32_MAX/pixel_size)

png_error (png_ptr,
"Image is too wide to process in memory");

row_pointers = png_malloc(png_ptr,
height* (sizeof (png_bytep)));

for (int i=0; i<height, i++)
row_pointers[i]=NULL; /* security precaution */

for (int i=0; i<height, i++)
row_pointerg[i]=png_malloc(png_ptr,
width* pixel _size);

png_set_rows(png_ptr, info_ptr, &row_pointers);
Alternatively you could allocate your image in one big block and define row_pointerd[i] to point into
the proper placesin your block, but first be sure that your platform is able to allocate such alarge
buffer:

/* Guard against integer overflow */

if (height > PNG_SIZE_MAX/(width* pixel_size)) {
png_error(png_ptr,"image_data buffer would be too large™);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_bytep buffer=png_malloc(png_ptr,height*width* pixel_size);

for (int i=0; i<height, i++)
row_pointerg[i]=buffer+i*width*pixel_size;

png_set_rows(png_ptr, info_ptr, &row_pointers);

If you use png_set_rows(), the application is responsible for freeing row_pointers (and row_pointergi],
if they were separately allocated).

If you don’t allocate row_pointers ahead of time, png_read png() will doit, and it'll be free' ed by
libpng when you call png_destroy_*().

Thelow-level read interface
If you are going the low-level route, you are now ready to read all the file information up to the actual
image data. Y ou do thiswith acall to png_read_info().
png_read info(png_ptr, info_ptr);

Thiswill process al chunks up to but not including the image data.

This also copies some of the data from the PNG file into the decode structure for use in later
transformations. Important information copiedinis:

1) The PNG file gamma from the gAMA chunk. This overwrites the default value provided by an
earlier call to png_set_ gammaor png_set_alpha mode.

2) Prior to libpng-1.5.4 the background color from a bK Gd chunk. This damages the information
provided by an earlier call to png_set_background resulting in unexpected behavior. Libpng-1.5.4 no

longer doesthis.

3) The number of significant bitsin each component value. Libpng uses this to optimize gamma
handling by reducing the internal lookup table sizes.

4) The transparent color information from atRNS chunk. This can be modified by alater call to

png_set tRNS.

Querying theinfo structure

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Functions are used to get the information from the info_ptr once it has been read. Note that these fields
may not be completely filled in until png_read end() has read the chunk data following the image.

png_get IHDR(png_ptr, info_ptr, &width, & height,
&bit_depth, &color_type, &interlace type,
& compression_type, &filter_method);

width - holds the width of the image
in pixels (up to 2/31).

height - holds the height of the image
in pixels (up to 231).

bit_depth - holds the bit depth of one of the
image channels. (valid values are
1, 2,4, 8, 16 and depend also on
the color_type. Seeadso
significant bits (sBIT) below).

color_type - describes which color/aphachannels
are present.
PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)
PNG_COLOR _TYPE _GRAY_ALPHA
(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type- (PNG_INTERLACE _NONE or
PNG_INTERLACE_ADAMY)

compression_type - (must be PNG_COMPRESSION_TYPE_BASE

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

for PNG 1.0)

filter_method - (must be PNG_FILTER_TYPE BASE
for PNG 1.0, and can also be
PNG_INTRAPIXEL DIFFERENCING if
the PNG datastream is embedded in
aMNG-1.0 datastream)

Any of width, height, color_type, bit_depth,
interlace _type, compression_type, or filter_method can
be NULL if you are not interested in their values.

Note that png_get IHDR() returns 32-bit datainto

the application’ s width and height variables.

Thisisan unsafe situation if these are not png_uint_32
variables. In such situations, the

png_get_image width() and png_get_image_height()
functions described below are safer.

width = png_get_image width(png_ptr,
info_ptr);

height = png_get_image_height(png_ptr,
info_ptr);

bit_depth = png_get_bit_depth(png_ptr,
info_ptr);

color_type =png_get_color_type(png_ptr,
info_ptr);

interlace_type = png_get_interlace type(png_ptr,
info_ptr);

compression_type = png_get_compression_type(png_ptr,
info_ptr);

filter_method = png_get_filter_type(png_ptr,
info_ptr);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

channels = png_get_channels(png_ptr, info_ptr);

channels - number of channels of info for the
color type (valid valuesare 1 (GRAY,,
PALETTE), 2 (GRAY_ALPHA), 3 (RGB),
4 (RGB_ALPHA or RGB + filler byte))

rowbytes = png_get_rowbytes(png_ptr, info_ptr);

rowbytes - number of bytes needed to hold arow
Thisvalue, the bit_depth, color_type,
and the number of channels can change
if you use transforms such as
png_set_expand(). See
png_read update info(), below.

signature = png_get_signature(png_ptr, info_ptr);

signature - holds the signature read from the
file (if any). Thedataiskeptin
the same offset it would be if the
whole signature wereread (i.e. if an
application had already read in 4
bytes of signature before starting
libpng, the remaining 4 bytes would
be in signature[4] through signature[7]
(see png_set_sig_bytes())).

These are al'so important, but their validity depends on whether the chunk has been read. The
png_get_valid(png_ptr, info_ptr, PNG_INFO_<chunk>) and png_get_<chunk>(png_ptr, info_ptr, ...)
functions return non-zero if the data has been read, or zero if it ismissing. The parametersto the
png_get <chunk> are set directly if they are smple datatypes, or a pointer into the info_ptr is returned
for any complex types.

The colorspace datafrom gAMA, cHRM, sRGB, iCCP, and sBIT chunksis simply returned to give the
application information about how the image was encoded. Libpng itself only does transformations
using the file gamma when combining semitransparent pixels with the background color, and, since
libpng-1.6.0, when converting between 8-bit SRGB and 16-bit linear pixelswithin the simplified API.
Libpng also uses the file gamma when converting RGB to gray, beginning with libpng-1.0.5, if the
application callspng_set_rgb to_gray()).

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_get PLTE(png_ptr, info_ptr, & palette,
&num_palette);

palette - the palette for thefile
(array of png_color)

num_palette - number of entriesin the palette

png_get gAMA(png_ptr, info_ptr, &file_gamma);
png_get gAMA _fixed(png_ptr, info_ptr, &int_file_ gamma);

file gamma - the gammaat which thefileis
written (PNG_INFO_gAMA)

int_file_gamma - 100,000 times the gamma at which the
fileiswritten

png_get cHRM(png_ptr, info_ptr, &white x, &white y, &red X,
&red vy, &green x, &green vy, &blue X, &blue y)

png_get cHRM_XYZ(png_ptr, info_ptr, &red X, &red Y, &red Z,
&green X, &green_ Y, &green_Z, &blue_X, &blue Y,
&blue _2)

png_get_ cHRM_fixed(png_ptr, info_ptr, &int_white x,
&int_white vy, &int_red X, &int_red y,
&int_green X, &int_green_y, &int_blue X,
&int_blue y)

png_get cHRM_XYZ fixed(png_ptr, info_ptr, &int_red X, &int_red Y,
&int_red Z, &int_green_X, &int_green_Y,
&int_green Z, &int_blue X, &int_blue Y,
&int_blue Z)

{white,red,green,blue} {x,y}
A color space encoding specified using the
chromaticities of the end points and the
white point. (PNG_INFO_cHRM)

{red,green,blue} _{X,Y,Z}
A color space encoding specified using the
encoding end points - the CIE tristimulus
specification of the intended color of the red,

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

green and blue channelsin the PNG RGB data.
The white point is simply the sum of the three
end points. (PNG_INFO_cHRM)

png_get sRGB(png_ptr, info_ptr, &srgh_intent);

srgb_intent - the rendering intent (PNG_INFO_sRGB)
The presence of the SRGB chunk
means that the pixel dataisin the
SRGB color space. This chunk also
implies specific values of gAMA and
cHRM.

png_get_iCCP(png_ptr, info_ptr, & name,
& compression_type, & profile, & proflen);

name - The profile name.

compression_type - The compression type; aways
PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
Y ou may give NULL to this argument to

ignoreit.

profile - International Color Consortium color
profile data. May contain NULSs.

proflen - length of profile datain bytes.

png_get_sBIT(png_ptr, info_ptr, &sig_bit);

sig_bit - the number of significant bits for
(PNG_INFO_sBIT) each of the gray,
red, green, and blue channels,
whichever are appropriate for the

given color type (png_color_16)

png_get tRNS(png_ptr, info_ptr, &trans_alpha,
&num_trans, &trans_color);

trans_alpha - array of apha (transparency)

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

entries for palette (PNG_INFO_tRNS)

num_trans - number of transparent entries
(PNG_INFO_tRNS)

trans_color - graylevel or color sample values of
the single transparent color for

non-paletted images (PNG_INFO_tRNS)

png_get_eXIf_1(png_ptr, info_ptr, & num_exif, & exif);
(PNG_INFO_eXiIf)

exif - Exif profile (array of png_byte)

png_get_hIST(png_ptr, info_ptr, & hist);
(PNG_INFO_hIST)

hist - histogram of palette (array of
png_uint_16)

png_get_tIME(png_ptr, info_ptr, &mod_time);

mod_time - timeimage was last modified
(PNG_VALID_tIME)

png_get bKGD(png_ptr, info_ptr, & background);

background - background color (of type
png_color_16p) (PNG_VALID_bKGD)
valid 16-bit red, green and blue

values, regardless of color_type

num_comments = png_get_text(png_ptr, info_ptr,
&text_ptr, &num_text);

num_comments - number of comments

text_ptr - array of png_text holding image
comments

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key - keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Can be empty.

text_ptr[i].text_length - length of text string,
after decompression, O for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, O for tEXt/zTXt

text_ptr[i].lang - language of comment (empty
string for unknown).

text_ptr[i].lang_key - keywordin UTF-8
(empty string for unknown).

Note that the itxt_|length, lang, and lang_key

members of the text_ptr structure only exist when the
library isbuilt with iTXt chunk support. Prior to
libpng-1.4.0 the library was built by default without
iTXt support. Also note that when iTXt is supported,
they contain NULL pointers when the "compression”
field contains PNG_TEXT_COMPRESSION_NONE or
PNG_TEXT_COMPRESSION_zTXt.

num_text - number of comments (same as
num_comments; you can put NULL here
to avoid the duplication)

Note while png_set_text() will accept text, language,

and translated keywords that can be NULL pointers, the
structure returned by png_get_text will always contain

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

regular zero-terminated C strings. They might be
empty strings but they will never be NULL pointers.

num_spalettes = png_get sPLT(png_ptr, info_ptr,
& palette ptr);

num_spalettes - number of sSPLT chunks read.
palette ptr - array of palette structures holding
contents of one or more sPLT chunks

read.

png_get_oFFs(png_ptr, info_ptr, & offset_x, & offset_y,
&unit_type);

offset x - positive offset from the left edge
of the screen (can be negative)

offset y - positive offset from the top edge
of the screen (can be negative)

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_get pHYs(png_ptr, info_ptr, &res X, &res vy,

&unit_type);
res x - pixels/unit physical resolution in
x direction
res y - pixels/unit physical resolution in
x direction

unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_get sCAL(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

width - width of apixel in physical scale units

height - height of apixe in physical scale units
(width and height are doubl es)

png_get sCAL_s(png_ptr, info_ptr, &unit, &width,
& height)

unit - physical scale units (an integer)

width - width of apixel in physical scale units
(expressed as astring)

height - height of apixel in physical scale units
(width and height are strings like "2.54")

num_unknown_chunks = png_get_unknown_chunks(png_ptr,
info_ptr, & unknowns)

unknowns - array of png_unknown_chunk
structures holding unknown chunks

unknowng[i].name - name of unknown chunk
unknowng|i].data - data of unknown chunk
unknowng|i].size - size of unknown chunk’s data
unknowng[i].location - position of chunk in file
The value of "i" corresponds to the order in which the
chunks were read from the PNG file or inserted with the
png_set_unknown_chunks() function.
The value of "location” is abitwise "or" of

PNG _HAVE_IHDR (0x01)

PNG_HAVE_PLTE (0x02)
PNG_AFTER_IDAT (0x08)

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

The data from the pHY s chunk can be retrieved in severa convenient forms:

res X = png_get x_pixels per_meter(png_ptr,
info_ptr)

res y =png_get y pixels per_meter(png_ptr,
info_ptr)

res X _and y = png_get pixels per_meter(png_ptr,
info_ptr)

res X = png_get_x_pixels per_inch(png_ptr,
info_ptr)

res y =png_get y pixels per_inch(png_ptr,
info_ptr)

res X_and y = png_get pixels per_inch(png_ptr,
info_ptr)

aspect_ratio = png_get_pixel_aspect_ratio(png_ptr,
info_ptr)

Each of these returns O [signifying "unknown"] if
the datais not present or if res x is0;
res X and yisQifres x!=res y

Note that because of the way the resolutions are
stored internaly, the inch conversions won't
come out to exactly even number. For example,
72 dpi is stored as 0.28346 pixels/meter, and
when thisisretrieved it is 71.9988 dpi, so
be sure to round the returned value appropriately
if you want to display a reasonable-looking result.

The data from the oFFs chunk can be retrieved in several convenient forms:
x_offset = png_get_x_offset_microns(png_ptr, info_ptr);

y_offset = png_get y_offset_microns(png_ptr, info_ptr);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

x_offset = png_get_x_offset_inches(png_ptr, info_ptr);
y_offset = png_get y offset_inches(png_ptr, info_ptr);

Each of these returns O [signifying "unknown" if both
x andy are Q] if the datais not present or if the
chunk is present but the unit isthe pixel. The
remark about inexact inch conversions applies here
aswell, because avalue in inches can't always be
converted to microns and back without some loss
of precision.

For more information, see the PNG specification for chunk contents. Be careful with trusting
rowbytes, as some of the transformations could increase the space needed to hold arow (expand, filler,
gray_to_rgb, etc.). See png_read _update_info(), below.

A quick word about text_ptr and num_text. PNG stores commentsin keyword/text pairs, one pair per
chunk, with no limit on the number of text chunks, and a 2*31 byte limit on their size. Whilethere are
suggested keywords, there is no requirement to restrict the use to these strings. It is strongly suggested
that keywords and text be sensible to humans (that’ s the point), so don’t use abbreviations. Non-
printing symbols are not allowed. See the PNG specification for more details. Thereisalso no
requirement to have text after the keyword.

Keywords should be limited to 79 Latin-1 characters without leading or trailing spaces, but non-
consecutive spaces are allowed within the keyword. It is possible to have the same keyword any
number of times. Thetext ptr isan array of png_text structures, each holding a pointer to alanguage
string, a pointer to a keyword and a pointer to atext string. The text string, language code, and
trandlated keyword may be empty or NULL pointers. The keyword/text pairs are put into the array in
the order that they are received. However, some or all of the text chunks may be after the image, so, to
make sure you have read all the text chunks, don’t mess with these until after you read the stuff after
theimage. Thiswill be mentioned again below in the discussion that goes with png_read_end().

I nput transformations
After you' ve read the header information, you can set up the library to handle any special
transformations of the image data. The various ways to transform the datawill be described in the
order that they should occur. Thisisimportant, as some of these change the color type and/or bit depth
of the data, and some others only work on certain color types and bit depths.

Transformations you request are ignored if they don’'t have any meaning for a particular input data

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

format. However some transformations can have an effect as aresult of a previous transformation. |If
you specify a contradictory set of transformations, for example both adding and removing the alpha
channel, you cannot predict the final result.

The color used for the transparency values should be supplied in the same format/depth as the current
image data. It is stored in the same format/depth as the image datain atRNS chunk, so thisis what
libpng expects for this data.

The color used for the background val ue depends on the need_expand argument as described below.

Datawill be decoded into the supplied row buffers packed into bytes unless the library has been told to
transform it into another format. For example, 4 bit/pixel paletted or grayscale datawill be returned 2
pixelg/byte with the leftmost pixel in the high-order bits of the byte, unless png_set_packing() is called.
8-bit RGB data will be stored in RGB RGB RGB format unless png_set_filler() or

png_set_add alpha() iscalled to insert filler bytes, either before or after each RGB triplet.

16-bit RGB data will be returned RRGGBB RRGGBB, with the most significant byte of the color
valuefirst, unlesspng_set scale 16() is called to transform it to regular RGB RGB triplets, or
png_set filler() or png_set_add alpha() is called to insert two filler bytes, either before or after each
RRGGBB triplet. Similarly, 8-bit or 16-bit grayscale data can be modified with png_set_filler(),
png_set_add apha(), png_set_strip_16(), or png_set_scale_16().

The following code transforms grayscale images of less than 8 to 8 bits, changes paletted images to
RGB, and adds afull alpha channel if there is transparency information in atRNS chunk. Thisis most
useful on grayscale images with bit depths of 2 or 4 or if there is a multiple-image viewing application
that wishesto treat all images in the same way.

if (color_type==PNG_COLOR_TYPE PALETTE)
png_set palette to _rgb(png_ptr);

if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_tRNYS)) png_set tRNS to_alpha(png_ptr);

if (color_type==PNG_COLOR _TYPE GRAY &&

The first two functions are actually aliases for png_set_expand(), added in libpng version 1.0.4, with
the function names expanded to improve code readability. In some future version they may actually do
different things.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

depth without changing tRNS to alpha.

Asof libpng version 1.5.2, png_set_expand_16() was added. It behaves aspng_set_expand();
however, the resultant channels have 16 bits rather than 8. Use this when the output color or gray
channels are made linear to avoid fairly severe accuracy |oss.

if (bit_depth < 16)
png_set expand 16(png_ptr);

PNG can have files with 16 bits per channel. If you only can handle 8 bits per channel, thiswill strip
the pixels down to 8-hit.

if (bit_depth == 16) #f PNG_LIBPNG_VER >= 10504
png_set scale 16(png_ptr); #else
png_set_strip_16(png_ptr); #endif

(The more accurate "png_set scale 16()" API became available in libpng version 1.5.4).

If you need to process the a pha channel on the image separately from the image data (for example if
you convert it to a bitmap mask) it is possible to have libpng strip the channel leaving just RGB or gray
data:

if (color_type & PNG_COLOR_MASK_ALPHA)
png_set_strip_alpha(png_ptr);

If you strip the alpha channel you need to find some other way of dealing with the information. If,
instead, you want to convert the image to an opague version with no alpha channel use
png_set_background; see below.

Asof libpng version 1.5.2, almost all useful expansions are supported, the major omissions are
conversion of grayscale to indexed images (which can be done trivialy in the application) and
conversion of indexed to grayscale (which can be done by atrivial manipulation of the palette.)

In the following table, the 01 means grayscale with depth<8, 31 means indexed with depth<8, other
numerals represent the color type, "T" means the tRNS chunk is present, A means an alpha channel is

present, and O means tRNS or alphais present but all pixelsin the image are opague.

FROM 01 31 0 0T 00 2 2T 20 3 3T 30 4A 40 6A 60
TO

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

0L =[G - - - - == - -« - --
31 [QQIAQAQIQ QQQQQIAIQA Q Q
01G+..GGGGGGDB BGBGB

OoT ItGtt + . Gt G G Gt G G Bt Bt GBt GBt
00O ItGtt . + Gt Gt G Gt Gt G Bt Bt GBt GBt
2 cCpPCCC+..C--CBCB BB
2T ¢t-ctCc Ct+t- - -CBtCBt Bt Bt
20 ct-CctCc Ctt+ - - -CBtCBt Bt Bt

3[QApQRIRAIQR QQ+ . .[Q[QQQ

3T [Qf p [Q[Q][Q] Qt Qt Qt t + t [Q[QL] Qt Qt

30 [Qf p [AH[QI[Q] Qt Qt Qt t t + [Q[Q] Qt Qt

4A IAG A T T GA GT GT GA GT GT + BA G GBA
40 IAGBA A T T GA GT GT GA GT GT BA + GBA G
6A CAPACAC C A TtT PAP P CCBA + BA

60 CAPBACAC C AtT T PAP PCBAC BA +

Within the matrix,
"+" identifies entries where 'from’ and 'to’ are the same.
"-" means the transformation is not supported.
"." means nothing is necessary (atRNS chunk can just be ignored).
"t" means the transformation is abtained by png_set_tRNS.
"A" means the transformation is obtained by png_set_add_alpha().
"X" means the transformation is obtained by png_set_expand().
"1" means the transformation is obtained by
if thereis no transparency in the original or the final
format).
"C" meansthe transformation is obtained by png_set gray to rgh().
"G" means the transformation is obtained by png_set rgb to gray().
"P" means the transformation is obtained by
png_set_expand_palette to_rgh().
"p" means the transformation is obtained by png_set_packing().
"Q" means the transformation is obtained by png_set quantize().
"T" means the transformation is obtained by
png_set tRNS to alpha().
"B" means the transformation is obtained by
png_set_background(), or png_strip_alpha().

When an entry has multiple transforms listed all are required to cause the right overall transformation.
When two transforms are separated by a comma either will do the job. When transforms are enclosed

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

in [] the transform should do the job but thisis currently unimplemented - a different format will result
if the suggested transformations are used.

In PNG files, the alpha channel in an image isthe level of opacity. If you need the alphachannel in an
image to be the level of transparency instead of opacity, you can invert the alpha channel (or the tRNS
chunk data) after it's read, so that O isfully opague and 255 (in 8-bit or paletted images) or 65535 (in
16-bit images) is fully transparent, with

png_set invert_alpha(png_ptr);

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can, resulting in, for example,
8 pixels per byte for 1 bit files. This code expandsto 1 pixel per byte without changing the values of
the pixels:

if (bit_depth < 8)
png_set_packing(png_ptr);

PNG files have possible bit depths of 1, 2, 4, 8, and 16. All pixels stored in a PNG image have been
"scaled" or "shifted" up to the next higher possible bit depth (e.g. from 5 bits/'sample in the range [0,31]
to 8 hits/sample in the range [0, 255]). However, it is aso possible to convert the PNG pixel data back
to the original bit depth of theimage. This call reduces the pixels back down to the original bit depth:

png_color_8p sig_hit;

if (png_get sBIT(png_ptr, info_ptr, &sig_hit))
png_set shift(png_ptr, sig_bit);

PNG files store 3-color pixelsin red, green, blue order. This code changes the storage of the pixelsto
blue, green, red:

if (color_type==PNG_COLOR_TYPE_RGB ||
color_type==PNG_COLOR_TYPE_RGB_ALPHA)
png_set_bgr(png_ptr);

PNG files store RGB pixels packed into 3 or 6 bytes. This code expands them into 4 or 8 bytes for
windowing systems that need them in this format:

if (color_type==PNG_COLOR_TYPE_RGB)
png_set_filler(png_ptr, filler, PNG_FILLER_BEFORE);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

where "filler" isthe 8-bit or 16-bit number to fill with, and the location is either

PNG_FILLER BEFORE or PNG_FILLER AFTER, depending upon whether you want the filler
before the RGB or after. When filling an 8-bit pixel, the least significant 8 bits of the number are used,
if a16-bit number is supplied. This transformation does not affect images that already have full alpha
channels. To add an opague a pha channel, use filler=0xffff and PNG_FILLER_AFTER which will
generate RGBA pixels.

Note that png_set_filler() does not change the color type. If you want to do that, you can add atrue
alpha channel with

if (color_type==PNG_COLOR_TYPE_RGSB ||
color_type==PNG_COLOR_TYPE_GRAY)
png_set_add apha(png_ptr, filler, PNG_FILLER_AFTER);

where "filler" contains the alpha value to assign to each pixel. The png_set_add_alpha() function was
added in libpng-1.2.7.

If you are reading an image with an alpha channel, and you need the data as ARGB instead of the
normal PNG format RGBA:

if (color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_swap_al pha(png_ptr);

For some uses, you may want a grayscale image to be represented as RGB. This code will do that
conversion:

if (color_type==PNG_COLOR_TYPE_GRAY ||
color_type==PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);

Conversely, you can convert an RGB or RGBA image to grayscale or grayscale with alpha
if (color_type==PNG_COLOR_TYPE_RGSB ||
color_type==PNG_COLOR _TYPE RGB_ALPHA)
png_set rgb to gray(png_ptr, error_action,
double red weight, double green_weight);

error_action = 1: silently do the conversion

error_action = 2: issue awarning if the original

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

image has any pixel where
red != green or red != blue

error_action = 3: issue an error and abort the
conversion if the original
image has any pixel where
red != green or red ! = blue

red weight: weight of red component
green weight: weight of green component
If either weight is negative, default

weights are used.

In the corresponding fixed point API the red_weight and green_weight values are simply scaled by
100,000:

png_set rgb to gray(png_ptr, error_action,
png_fixed point red_weight,
png_fixed point green_weight);
If you have set error_action = 1 or 2, you can later check whether the image really was gray, after
processing the image rows, with the png_get_rgb_to_gray_status(png_ptr) function. It will return a
png_byte that is zero if the image was gray or 1 if there were any non-gray pixels. Background and
sBIT datawill be silently converted to grayscale, using the green channel datafor sBIT, regardless of
the error_action setting.
The default values come from the PNG file cHRM chunk if present; otherwise, the defaults correspond
to the ITU-R recommendation 709, and also the SRGB color space, as recommended in the Charles
Poynton’s Colour FAQ, Copyright (c) 2006-11-28 Charles Poynton, in section 9:
<http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.htmI#RTFToC9>
Y =0.2126* R+0.7152* G+ 0.0722* B
Previous versions of this document, 1998 through 2002, recommended a slightly different formula:

Y =0.212671* R+ 0.715160 * G + 0.072169 * B

Libpng uses an integer approximation:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Y = (6968 * R + 23434 * G + 2366 * B)/32768
The calculation isdone in alinear colorspace, if the image gamma can be determined.

The png_set_background() function has been described already; it tells libpng to composite images
with alpha or simple transparency against the supplied background color. For compatibility with
versions of libpng earlier than libpng-1.5.4 it is recommended that you call the function after reading
the file header, even if you don’t want to use the color in abKGD chunk, if one exists.

If the PNG file contains a bK GD chunk (PNG_INFO_bKGD valid), you may use this color, or supply
another color more suitable for the current display (e.g., the background color from aweb page). You
need to tell libpng how the color is represented, both the format of the component values in the color
(the number of bits) and the gamma encoding of the color. The function takes two arguments,
background_gamma_mode and need_expand to convey this information; however, only two
combinations are likely to be useful:

png_color_16 my_background;
png_color_16p image background;

if (png_get bKGD(png_ptr, info_ptr, &image_background))
png_set_background(png_ptr, image_background,
PNG_BACKGROUND_GAMMA_FILE, 1/*needs to be expanded*/, 1);
else
png_set_background(png_ptr, & my_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*do not expand*/, 1);

The second call was described above - my_background isin the format of the final, display, output
produced by libpng. Because you now know the format of the PNG it is possible to avoid the need to
choose either 8-bit or 16-bit output and to retain palette images (the pal ette colors will be modified
appropriately and the tRNS chunk removed.) However, if you are doing this, take great care not to ask
for transformations without checking first that they apply!

In thefirst call the background color has the original bit depth and color type of the PNG file. So, for
pal ette images the color is supplied as a palette index and for low bit greyscale images the color isa

reduced bit value in image_background->gray.

If you didn't call png_set_gamma() before reading the file header, for example if you need your code
to remain compatible with older versions of libpng prior to libpng-1.5.4, thisis the place to call it.

Do not call it if you called png_set_apha_mode(); doing so will damage the settings put in place by

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_set apha mode(). (If png_set_alpha mode() is supported then you can certainly do
png_set_ gamma() before reading the PNG header.)

This API unconditionally sets the screen and file gammavalues, so it will override the value in the
PNG file unlessit is called before the PNG file reading starts. For this reason you must always call it
with the PNG file value when you call it in this position:

if (png_get gAMA (png_ptr, info_ptr, &file_gamma))
png_set gamma(png_ptr, screen_gamma, file_gamma);

else
png_set gamma(png_ptr, screen_gamma, 0.45455);

If you need to reduce an RGB file to a paletted file, or if a paletted file has more entries than will fit on
your screen, png_set_quantize() will do that. Note that thisis a simple match quantization that merely
finds the closest color available. This should work fairly well with optimized palettes, but fairly badly
with linear color cubes. If you pass a palette that is larger than maximum_colors, the file will reduce
the number of colorsin the palette so it will fit into maximum_colors. If thereisa histogram, libpng
will use it to make more intelligent choices when reducing the palette. |f thereis no histogram, it may
not do as good ajob.

if (color_type & PNG_COLOR_MASK_COLOR)
{
if (png_get valid(png_ptr, info_ptr,
PNG_INFO_PLTE))

{
png_uint_16p histogram = NULL;

png_get_hlST(png_ptr, info_ptr,
& histogram);

png_set_quantize(png_ptr, palette, num_pal ette,
max_screen_colors, histogram, 1);

ese

{
png_color std_color_cubelMAX_SCREEN_COLORS] =

{ ..colors... };

png_set_quantize(png_ptr, std_color_cube,

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

MAX_SCREEN_COLORS, MAX_SCREEN_COLORS,
NULL,0);

PNG files describe monochrome as black being zero and white being one. The following code will
reverse this (make black be one and white be zero):

if (bit_depth==1&& color_type == PNG_COLOR_TYPE_GRAY)
png_set_invert_mono(png_ptr);

This function can also be used to invert grayscale and gray-a phaimages:

if (color_type==PNG_COLOR_TYPE_GRAY ||
color_type==PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_invert_mono(png_ptr);

PNG files store 16-bit pixelsin network byte order (big-endian, ie. most significant bitsfirst). This
code changes the storage to the other way (little-endian, i.e. least significant bits first, the way PCs
store them):

if (bit_depth == 16)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change the order the pixels
are packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

Finally, you can write your own transformation function if none of the existing ones meets your needs.
Thisis done by setting a callback with

png_set read user_transform_fn(png_ptr,
read_transform_fn);

Y ou must supply the function

void read_transform_fn(png_structp png_ptr, png_row_infop
row_info, png_bytep data)

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

See pngtest.c for aworking example. Y our function will be called after all of the other transformations
have been processed. Take care with interlaced images if you do the interlace yoursdlf - the width of
therow isthewidthin’row_info’, not the overall image width.

If supported, libpng provides two information routines that you can useto find where you arein
processing the image:

png_get_current_pass_number(png_structp png_ptr);
png_get_current_row_number(png_structp png_ptr);

Don't try using these outside a transform callback - firstly they are only supported if user transforms
are supported, secondly they may well return unexpected results unless the row is actually being
processed at the moment they are called.

With interlaced images the value returned is the row in the input sub-image image. Use
PNG_ROW_FROM_PASS ROW(row, pass) and PNG_COL_FROM_PASS_COL (col, pass) to find
the output pixel (x,y) given an interlaced sub-image pixel (row,col,pass).

The discussion of interlace handling above contains more information on how to use these values.

Y ou can also set up a pointer to a user structure for use by your callback function, and you can inform
libpng that your transform function will change the number of channels or bit depth with the function

png_set user_transform_info(png_ptr, user_ptr,
user_depth, user_channels);

The user’s application, not libpng, is responsible for allocating and freeing any memory required for
the user structure.

Y ou can retrieve the pointer viathe function png_get_user_transform_ptr(). For example:

voidp read user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

The last thing to handle isinterlacing; thisis covered in detail below, but you must call the function
here if you want libpng to handle expansion of the interlaced image.

number_of_passes = png_set_interlace_handling(png_ptr);

After setting the transformations, libpng can update your png_info structure to reflect any

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

transformations you' ve requested with this call.
png_read update _info(png_ptr, info_ptr);

Thisis most useful to update the info structure’ s rowbytes field so you can use it to allocate your image
memory. Thisfunction will aso update your palette with the correct screen_gamma and background if
these have been given with the calls above. You may only call png_read update info() once with a
particular info_ptr.

After you call png_read update info(), you can alocate any memory you need to hold theimage. The
row datais ssmply raw byte data for all forms of images. Asthe actual alocation varies among
applications, no example will be given. If you are alocating one large chunk, you will need to build an
array of pointersto each row, asit will be needed for some of the functions below.

Be sure that your platform can allocate the buffer that you'll need. libpng internally checks for
oversize width, but you' Il need to do your own check for number_of rows*width*pixel_size if you are
using a multiple-row buffer:

/* Guard against integer overflow */
if (number_of rows>PNG_SIZE MAX/(width*pixel_size)) {
png_error(png_ptr,"image_data buffer would be too large™);

Remember: Before you call png_read update info(), the png_get_*() functions return the values
corresponding to the original PNG image. After you call png_read update info the values refer to the
image that libpng will output. Consequently you must call all the png_set_ functions before you call
png_read update info(). Thisis particularly important for png_set_interlace_handling() - if you are
going to call png_read_update info() you must call png_set_interlace_handling() before it unless you
want to receive interlaced output.

Reading image data
After you' ve alocated memory, you can read the image data. The simplest way to do thisisin one
function call. If you are allocating enough memory to hold the whole image, you can just call
png_read image() and libpng will read in all the image data and put it in the memory area supplied.
Y ou will need to passin an array of pointersto each row.

This function automatically handles interlacing, so you don't need to call png_set_interlace_handling()

(unlessyou call png_read_update_info()) or call this function multiple times, or any of that other stuff
necessary with png_read rows().

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_read image(png_ptr, row_pointers);
where row_pointersis:
png_bytep row_pointerg height];
Y ou can point to void or char or whatever you use for pixels.

If you don’t want to read in the whole image at once, you can use png_read_rows() instead. If thereis
no interlacing (check interlace type == PNG_INTERLACE_NONE), thisissimple:

png_read rows(png_ptr, row_pointers, NULL,
number_of _rows);

where row_pointersisthe same asin the png_read _image() call.

If you are doing thisjust one row at atime, you can do this with asingle row_pointer instead of an
array of row_pointers:

png_bytep row_pointer = row;
png_read row(png_ptr, row_pointer, NULL);

If thefileisinterlaced (interlace type!= 0inthe IHDR chunk), things get somewhat harder. The only
current (PNG Specification version 1.2) interlacing type for PNG is (interlace_type ==
PNG_INTERLACE_ADAMY); asomewhat complicated 2D interlace scheme, known as Adam?7, that
breaks down an image into seven smaller images of varying size, based on an 8x8 grid. Thisnumber is
defined (from libpng 1.5) as PNG_INTERLACE_ADAM7_PASSESin png.h

libpng can fill out those images or it can give them to you "asis". It isamost always better to have
libpng handle the interlacing for you. If you want the images filled out, there are two ways to do that.
The one mentioned in the PNG specification is to expand each pixel to cover those pixels that have not
been read yet (the "rectangle” method). Thisresultsin ablocky image for the first pass, which
gradually smooths out as more pixels are read. The other method is the "sparkle" method, where pixels
aredrawn only in their final locations, with the rest of the image remaining whatever colors they were
initialized to before the start of theread. The first method usually |ooks better, but tends to be slower,
as there are more pixelsto put in the rows.

If, asislikely, you want libpng to expand the images, call this before calling png_start_read image() or
png_read update_info():

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

if (interlace_type == PNG_INTERLACE_ADAM?7)
number_of passes
=png_set_interlace_handling(png_ptr);

Thiswill return the number of passes needed. Currently, thisis seven, but may change if another
interlace typeis added. Thisfunction can be called even if the fileis not interlaced, where it will return
onepass. You then need to read the whole image 'number_of_passes' times. Each time will distribute
the pixels from the current pass to the correct place in the output image, so you need to supply the same
rowsto png_read_rowsin each pass.

If you are not going to display the image after each pass, but are going to wait until the entireimage is
read in, use the sparkle effect. This effect isfaster and the end result of either method is exactly the
same. If you are planning on displaying the image after each pass, the "rectangle” effect is generally
considered the better looking one.

If you only want the "sparkle" effect, just call png_read row() or png_read_rows() as normal, with the
third parameter NULL. Make sure you make pass over the image number_of passes times, and you
don't change the datain the rows between calls. Y ou can change the locations of the data, just not the
data. Each pass only writes the pixels appropriate for that pass, and assumes the data from previous
passesisstill valid.

png_read rows(png_ptr, row_pointers, NULL,
number_of _rows);

or

png_read row(png_ptr, row_pointers, NULL);

If you only want the first effect (the rectangles), do the same as before except pass the row buffer in the
third parameter, and leave the second parameter NULL.

png_read rows(png_ptr, NULL, row_pointers,
number_of _rows);

or

png_read row(png_ptr, NULL, row_pointers);

If you don’t want libpng to handle the interlacing details, just call png_read rows()
PNG_INTERLACE ADAM7_PASSEStimesto read in al the images. Each of theimagesisavalid
image by itself; however, you will almost certainly need to distribute the pixels from each sub-imageto

the correct place. Thisiswhere everything gets very tricky.

If you want to retrieve the separate images you must pass the correct number of rows to each

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

successive call of png_read_rows(). The calculation gets pretty complicated for small images, where
some sub-images may not even exist because either their width or height ends up zero. libpng provides
two macros to help you in 1.5 and later versions:

png_uint_32 width = PNG_PASS_COL S(image_width, pass_number);
png_uint_32 height = PNG_PASS ROWS(image_height, pass_number);

Respectively these tell you the width and height of the sub-image corresponding to the numbered pass.
'pass isininthe range 0 to 6 - this can be confusing because the specification refers to the same passes
as1lto 7! Becareful, you must check both the width and height before calling png_read rows() and
not call it for that passif either is zero.

Y ou can, of course, read each sub-image row by row. If you want to produce optimal code to make a
pixel-by-pixel transformation of an interlaced image this is the best approach; read each row of each
pass, transform it, and write it out to a new interlaced image.

If you want to de-interlace the image yourself libpng provides further macros to help that tell you
where to place the pixelsin the output image. Because the interlacing schemeis rectangular - sub-
image pixels are always arranged on a rectangular grid - al you need to know for each passisthe
starting column and row in the output image of the first pixel plus the spacing between each pixel. As
of libpng 1.5 there are four macros to retrieve this information:

png_uint_32 x = PNG_PASS START_COL (pass);
png_uint_32y = PNG_PASS START_ROW(pass);
png_uint_32 xStep = 1U << PNG_PASS COL_SHIFT(pass);
png_uint_32 yStep = 1U << PNG_PASS ROW_SHIFT(pass);

These allow you to write the obvious loop:

png_uint_32 input_y = 0;
png_uint_32 output_y = PNG_PASS START_ROW(pass);

while (output_y < output_image_height)

{
png_uint_32 input_x = 0;
png_uint_32 output_ x = PNG_PASS START_COL (pass);

while (output_x < output_image_width)

{
image[output_y][output_x] =

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

subimage] pass][input_y][input_x++];

output_x += xStep;
}

++input_y;
output_y += yStep;
}

Notice that the steps between successive output rows and columns are returned as shifts. Thisis
possible because the pixels in the subimages are always a power of 2 apart - 1, 2, 4 or 8 pixels- in the
original image. In practice you may need to directly calculate the output coordinate given an input
coordinate. libpng provides two further macros for this purpose:

png_uint_32 output_x = PNG_COL_FROM_PASS COL (input_x, pass);
png_uint_32 output_y = PNG_ROW_FROM_PASS ROW(input_y, pass);

Finally a pair of macros are provided to tell you if a particular image row or column appearsin agiven
pass:

int col_in_pass=PNG_COL_IN_INTERLACE_PASS(output_x, pass);
int row_in_pass=PNG_ROW_IN_INTERLACE_PASS(output_y, pass);

Bear in mind that you will probably also need to check the width and height of the passin addition to
the above to be sure the pass even exists!

With any luck you are convinced by now that you don’t want to do your own interlace handling. In
reality normally the only good reason for doing thisisif you are processing PNG files on a pixel-by-
pixel basis and don’t want to load the whole file into memory when it is interlaced.

libpng includes a test program, pngvalid, that illustrates reading and writing of interlaced images. If

you can't get interlacing to work in your code and don’'t want to leave it to libpng (the recommended
approach), see how pngvalid.c doesit.

Finishing a sequential read
After you are finished reading the image through the low-level interface, you can finish reading the
file.

If you want to use a different crc action for handling CRC errors in chunks after the image data, you

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

can call png_set crc_action() again at this point.

If you are interested in comments or time, which may be stored either before or after the image data,
you should pass the separate png_info struct if you want to keep the comments from before and after
the image separate.

png_infop end_info = png_create_info_struct(png_ptr);

if (end_info)
{
png_destroy read struct(&png_ptr, &info_ptr,
(png_infopp)NULL);
return ERROR;

}

png_read end(png_ptr, end_info);
If you are not interested, you should still call png_read_end() but you can pass NULL, avoiding the
need to create an end_info structure. If you do this, libpng will not process any chunks after IDAT
other than skipping over them and perhaps (depending on whether you have called png_set_crc_action)
checking their CRCs while looking for the IEND chunk.

png_read_end(png_ptr, (png_infop)NULL);

If you don’t call png_read end(), then your file pointer will be left pointing to the first chunk after the
last IDAT, which is probably not what you want if you expect to read something beyond the end of the
PNG datastream.

When you are done, you can free all memory allocated by libpng like this:

png_destroy_read_struct(& png_ptr, &info_ptr,
&end_info);

or, if you didn’t create an end_info structure,

png_destroy read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

Itisalso possible to individually free the info_ptr members that point to libpng-allocated storage with
the following function:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_free data(png_ptr, info_ptr, mask, seq)

mask - identifies data to be freed, a mask

containing the bitwise OR of one or

more of
PNG_FREE PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE ICCP,
PNG_FREE PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

or simply PNG_FREE ALL

seq - sequence number of item to be freed
(-1 for al items)

This function may be safely called when the relevant storage has already been freed, or has not yet
been allocated, or was alocated by the user and not by libpng, and will in those cases do nothing. The
"seq" parameter isignored if only one item of the selected datatype, such as PLTE, isalowed. If
"seq" isnot -1, and multiple items are allowed for the data type identified in the mask, such astext or
SPLT, only the n’th item in the structureis freed, where nis "seq".

The default behavior is only to free data that was allocated internally by libpng. This can be changed,
so that libpng will not free the data, or so that it will free data that was allocated by the user with
png_malloc() or png_caloc() and passed in viaapng_set_*() function, with

png_data freer(png_ptr, info_ptr, freer, mask)

freer - one of
PNG_DESTROY_WILL_FREE DATA
PNG _SET WILL _FREE DATA
PNG USER WILL_FREE DATA

mask - which data elements are affected
same choices asin png_free data()

Thisfunction only affects data that has already been allocated. Y ou can call this function after reading
the PNG data but before calling any png_set_*() functions, to control whether the user or the
png_set_*() function is responsible for freeing any existing data that might be present, and again after
the png_set_*() functions to control whether the user or png_destroy_*() is supposed to free the data.
When the user assumes responsibility for libpng-allocated data, the application must use png_free() to

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

freeit, and when the user transfers responsibility to libpng for data that the user has allocated, the user
must have used png_malloc() or png_calloc() to alocate it.

If you allocated your row_pointersin asingle block, as suggested above in the description of the high
level read interface, you must not transfer responsibility for freeing it to the png_set_rows or
png_read_destroy function, because they would also try to free the individual row_pointerd[i].

If you alocated text_ptr.text, text_ptr.lang, and text_ptr.translated keyword separately, do not transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a png_text structure it combines
these members with the key member, and png_free data() will free only text_ptr.key. Similarly, if you
transfer responsihility for free'ing text_ptr from libpng to your application, your application must not
separately free those members.

The png_free_data() function will turn off the "valid" flag for anything it frees. If you need to turn the
flag off for a chunk that was freed by your application instead of by libpng, you can use

png_set_invalid(png_ptr, info_ptr, mask);

mask - identifies the chunks to be made invalid,

containing the bitwise OR of one or

more of
PNG_INFO_gAMA, PNG_INFO_sBIT,
PNG_INFO_cHRM, PNG_INFO_PLTE,
PNG_INFO_tRNS, PNG_INFO_bKGD,
PNG_INFO_eXIf,
PNG_INFO_hIST, PNG_INFO_pHYs,
PNG_INFO_oFFs, PNG_INFO_tIME,
PNG_INFO_pCAL, PNG_INFO_sRGB,
PNG_INFO _iCCP, PNG_INFO sPLT,
PNG_INFO_sCAL, PNG_INFO_IDAT

For amore compact example of reading a PNG image, see the file example.c.

Reading PNG files progressively
The progressive reader is dlightly different from the non-progressive reader. Instead of calling
png_read_info(), png_read_rows(), and png_read end(), you make one call to png_process_data(),
which calls callbacks when it has the info, arow, or the end of the image. Y ou set up these callbacks
with png_set_progressive read fn(). You don’'t have to worry about the input/output functions of
libpng, asyou are giving the library the data directly in png_process data(). | will assume that you

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

have read the section on reading PNG files above, so | will only highlight the differences (although |
will show all of the code).

png_structp png_ptr; png_infop info_ptr;

/¥ An example code fragment of how you would
initialize the progressive reader in your
application. */
int
initialize_png_reader()
{
png_ptr = png_create read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_pitr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return ERROR,;

info_ptr = png_create info_struct(png_ptr);

if (linfo_ptr)
{
png_destroy_read_struct(& png_ptr,
(png_infopp)NULL, (png_infopp)NULL);
return ERROR,;
}

if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_read_struct(& png_ptr, &info_pitr,
(png_infopp)NULL);
return ERROR,;

}

/* Thisone' snew. You can provide functions
to be called when the header info isvalid,
when each row is completed, and when the image
isfinished. If youaren’'t using all functions,
you can specify NULL parameters. Even when all
three functions are NULL, you need to call

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual

png_set progressive read fn(). You can use
any struct asthe user_ptr (cast to avoid pointer
for the function call), and retrieve the pointer
from inside the callbacks using the function

png_get_progressive ptr(png_ptr);

which will return avoid pointer, which you have
to cast appropriately.
*/
png_set progressive read_fn(png_ptr, (void *)user_ptr,
info_callback, row_callback, end_callback);

return O;
}

/* A code fragment that you call asyou receive blocks
of data*/
int
process _data(png_bytep buffer, png_uint_32 length)
{
if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_read struct(& png_ptr, &info_ptr,
(png_infopp)NULL);
return ERROR,;
}

[* Thisone' snew also. Simply giveit achunk
of datafrom thefile stream (in order, of
course). On machines with segmented memory
models machines, don’t give it any more than
64K. The library seemsto run fine with sizes
of 4K. Although you can give it much lessif
necessary (I assume you can give it chunks of
1 byte, | haven't tried less than 256 bytes
yet). When this function returns, you may
want to display any rows that were generated
in the row callback if you don't already do
so there.

June 21, 2023

LIBPNG(3)

LIBPNG(3)

LIBPNG(3)

}

*/
png_process data(png_ptr, info_ptr, buffer, length);

/* At this point you can call png_process data skip if

you want to handle data the library will skip yourself;
it simply returns the number of bytesto skip (and stops

libpng skipping that number of bytes on the next
png_process datacall).
return O;

/* Thisfunctioniscalled (as set by

png_set progressive_read_fn() above) when enough data

has been supplied so all of the header has been
read.

*/
void
info_callback(png_structp png_ptr, png_infop info)

{

/* Do any setup here, including setting any of
the transformations mentioned in the Reading
PNG files section. For now, you _must_ call
either png_start_read_image() or
png_read update_info() after al the
transformations are set (even if you don't set
any). You may start getting rows before
png_process data() returns, so thisis your
last chance to prepare for that.

Thisiswhere you turn on interlace handling,
assuming you don’t want to do it yourself.

If you need to you can stop the processing of
your original input data at this point by calling
png_process data pause. This returns the number

of unprocessed bytes from the last png_process data

call - itisup to you to ensure that the next call

sees these bytes again. If you don’t want to bother
with this you can get libpng to cache the unread
bytes by setting the 'save’ parameter (see png.h) but

June 21, 2023

FreeBSD Library Functions Manual

LIBPNG(3)

LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual

then libpng will have to copy the datainternally.
*/

/* Thisfunction is called when each row of image
datais complete */
void
row_callback(png_structp png_ptr, png_bytep new_row,
png_uint_32 row_num, int pass)
{
* If theimage isinterlaced, and you turned
on the interlace handler, this function will
be called for every row in every pass. Some
of these rows will not be changed from the
previous pass. When the row is not changed,
the new_row variable will be NULL. The rows
and passes are called in order, so you don’t
really need the row_num and pass, but I'm
supplying them because it may make your life
easier.

If you did not turn on interlace handling then
the callback is called for each row of each
sub-image when the image isinterlaced. In this
case’'row_num’ isthe row in the sub-image, not
the row in the output image asit isin al other
Cases.

For the non-NULL rows of interlaced images when
you have switched on libpng interlace handling,
you must call png_progressive_combine_row()
passing in the row and the old row. You can
call thisfunction for NULL rows (it will just
return) and for non-interlaced images (it just
does the memcpy for you) if it will make the
code easier. Thus, you can just do thisfor
al casesif you switch on interlace handling;

*/

png_progressive_combine_row(png_ptr, old_row,

June 21, 2023

LIBPNG(3)

LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

new_row);

/* where old_row is what was displayed
previously for therow. Note that the first
pass (pass == 0, really) will completely cover
the old row, so the rows do not have to be
initialized. After thefirst pass (and only
for interlaced images), you will have to pass
the current row, and the function will combine
the old row and the new row.

You can also call png_process data pause in this
callback - see above.
*/
}

void
end_callback(png_structp png_ptr, png_infop info)
{

/* Thisfunction is caled after the whole image
has been read, including any chunks after the
image (up to and including the IEND). You
will usually have the same info chunk as you
had in the header, although some data may have
been added to the comments and time fields.

Most people won't do much here, perhaps setting

aflag that marks the image as finished.
*/

IV.Writing
Much of thisisvery similar to reading. However, everything of importance is repeated here, so you
won’t have to constantly ook back up in the reading section to understand writing.

Setup

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Y ou will want to do the I/O initialization before you get into libpng, so if it doesn’t work, you don't
have anything to undo. If you are not using the standard /O functions, you will need to replace them
with custom writing functions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "wb");

if (Ifp)
return ERROR;

Next, png_struct and png_info need to be allocated and initialized. As these can be both relatively
large, you may not want to store these on the stack, unless you have stack space to spare. Of course,
you will want to check if they return NULL. If you are aso reading, you won't want to name your read
structure and your write structure both "png_ptr"; you can call them anything you like, such as
"read_ptr" and "write_ptr". Look at pngtest.c, for example.

png_structp png_ptr = png_create_write_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if ('png_ptr)
return ERROR;

png_infop info_ptr = png_create_info_struct(png_ptr);
if (linfo_ptr)
{
png_destroy_write_struct(&png_ptr,
(png_infopp)NULL);
return ERROR;

}

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUPPORTED
and use png_create_write_struct_2() instead of png_create write_struct():

png_structp png_ptr = png_create_write_struct_2
(PNG_LIBPNG_VER _STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free fn);

After you have these structures, you will need to set up the error handling. When libpng encounters an
error, it expects to longjmp() back to your routine. Therefore, you will need to call setjmp() and pass

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

the png_jmpbuf(png_ptr). If you write the file from different routines, you will need to update the
png_jmpbuf(png_ptr) every time you enter a new routine that will call apng_*() function. See your
documentation of setjmp/longjmp for your compiler for more information on setjmp/longimp. Seethe
discussion on libpng error handling in the Customizing Libpng section below for more information on
the libpng error handling.

if (setjmp(png_jmpbuf(png_ptr)))

{

png_destroy_write struct(&png_ptr, &info_ptr);
fclose(fp);
return ERROR;

}
return;

If you would rather avoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_NO_SETJMP, in which case errors will result in acall to PNG_ABORT() which defaults to
abort().

Y ou can #define PNG_ABORT() to a function that does something more useful than abort(), aslong as
your function does not return.

Checking for invalid palette index on write was added at libpng 1.5.10. If apixel contains an invalid
(out-of-range) index libpng issues a benign error. Thisis enabled by default because this condition is
an error according to the PNG specification, Clause 11.3.2, but the error can be ignored in each png_ptr
with

png_set check for_invalid_index(png_ptr, 0);

If the error isignored, or if png_benign_error() treatsit asawarning, any invalid pixels are written as-
is by the encoder, resulting in an invalid PNG datastream as output. In this case the application is
responsible for ensuring that the pixel indexes are in range when it writes a PLTE chunk with fewer
entries than the bit depth would allow.

Now you need to set up the output code. The default for libpng isto use the C function fwrite(). If you
use this, you will need to passavalid FILE * in the function png_init_io(). Be surethat thefileis
opened in binary mode. Again, if you wish to handle writing data in another way, see the discussion on

libpng I/0 handling in the Customizing Libpng section below.

png_init_io(png_ptr, fp);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

If you are embedding your PNG into a datastream such as MNG, and don’t want libpng to write the
8-byte signature, or if you have already written the signature in your application, use

png_set_sig_bytes(png_ptr, 8);

to inform libpng that it should not write a signature.

Write callbacks
At this point, you can set up a callback function that will be called after each row has been written,
which you can use to control aprogress meter or thelike. It's demonstrated in pngtest.c. Y ou must
supply afunction

void write_row_callback(png_structp png_ptr, png_uint_32 row,
int pass);
{

[* put your code here */

}

(You can give it another name that you like instead of "write row_callback™)
Toinform libpng about your function, use
png_set write status fn(png_ptr, write_row_callback);

When this function is called the row has aready been completely processed and it has also been written
out. The'row’ and 'pass’ refer to the next row to be handled. For the non-interlaced case the row that
was just handled is simply one less than the passed in row number, and pass will awaysbe 0. For the
interlaced case the same applies unless the row value is 0, in which case the row just handled was the
last one from one of the preceding passes. Because interlacing may skip a pass you cannot be sure that
the preceding passisjust 'pass-1', if you realy need to know what the last passis record (row,pass)
from the callback and use the last recorded value each time.

As with the user transform you can find the output row using the PNG_ROW_FROM_PASS ROW
macro.

Y ou now have the option of modifying how the compression library will run. The following functions
are mainly for testing, but may be useful in some cases, like if you need to write PNG files extremely
fast and are willing to give up some compression, or if you want to get the maximum possible
compression at the expense of slower writing. If you have no special needsin this area, let the library

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

do what it wants by not calling this function at all, asit has been tuned to deliver a good
speed/compression ratio. The second parameter to png_set_filter() isthe filter method, for which the
only valid values are O (as of the July 1999 PNG specification, version 1.2) or 64 (if you are writing a
PNG datastream that is to be embedded in a MNG datastream). The third parameter is aflag that
indicates which filter type(s) are to be tested for each scanline. See the PNG specification for details
on the specific filter types.

* turn on or off filtering, and/or choose
specific filters. You can use either asingle
PNG FILTER VALUE NAME or the bitwise OR of one
or more PNG_FILTER _NAME masks.

*/

png_set_filter(png_ptr, O,
PNG_FILTER_NONE |PNG_FILTER VALUE_NONE |
PNG_FILTER_SUB |PNG_FILTER _VALUE_SUB |
PNG_FILTER_UP |PNG_FILTER_VALUE _UP |
PNG_FILTER_AVG |PNG_FILTER VALUE_AVG |
PNG_FILTER_PAETH | PNG_FILTER_VALUE_PAETH|
PNG_ALL_FILTERS | PNG_FAST_FILTERS);

If an application wantsto start and stop using particular filters during compression, it should start out
with all of thefilters (to ensure that the previous row of pixelswill be stored in caseit’s needed later),
and then add and remove them after the start of compression.

If you are writing a PNG datastream that isto be embedded in aMNG datastream, the second
parameter can be either O or 64.

The png_set_compression *() functions interface to the zlib compression library, and should mostly be
ignored unless you really know what you are doing. The only generally useful call is
png_set_compression_level () which changes how much time zlib spends on trying to compress the
image data. See the Compression Library (zlib.h and algorithm.txt, distributed with zlib) for details on
the compression levels.

#include zlib.h
/* Set the zlib compression level */

png_set_compression_level(png_ptr,
Z_BEST_COMPRESSION);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual

* Set other zlib parameters for compressing IDAT */
png_set compression_mem_level(png_ptr, 8);
png_set_compression_strategy(png_ptr,

Z DEFAULT_STRATEGY);
png_set_compression_window_bits(png_ptr, 15);
png_set_compression_method(png_ptr, 8);
png_set_compression_buffer_size(png_ptr, 8192)

* Set zlib parameters for text compression

* |f you don't call these, the parameters

* fall back on those defined for IDAT chunks

*/

png_set text_compression_mem_level(png_ptr, 8);

png_set_text_compression_strategy(png_ptr,
Z_DEFAULT_STRATEGY);

png_set text_compression_window_bits(png_ptr, 15);

png_set text_compression_method(png_ptr, 8);

Setting the contents of info for output

LIBPNG(3)

Y ou now need to fill in the png_info structure with all the data you wish to write before the actual
image. Note that the only thing you are allowed to write after the image is the text chunks and the time
chunk (as of PNG Specification 1.2, anyway). See png_write_end() and the latest PNG specification
for moreinformation on that. If you wish to write them before the image, fill them in now, and flag
that data as being valid. If you want to wait until after the data, don't fill them until png_write_end().
For al the fieldsin png_info and their data types, see png.h. For explanations of what the fields

contain, see the PNG specification.
Some of the more important parts of the png_info are:
png_set_IHDR(png_ptr, info_ptr, width, height,

bit_depth, color_type, interlace type,
compression_type, filter_method)

width - holds the width of the image
in pixels (up to 231).

height - holds the height of the image
in pixels (up to 2"31).

June 21, 2023

LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

bit depth - holds the bit depth of one of the
image channels.
(vaidvaluesarel, 2, 4, 8, 16
and depend also on the
color_type. Seeaso significant
bits (sBIT) below).

color_type - describeswhich color/alpha
channels are present.
PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace type- PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAMY7

compression_type - (must be
PNG_COMPRESSION_TYPE_DEFAULT)

filter_method - (must be PNG_FILTER TYPE_DEFAULT
or, if you arewriting a PNG to
be embedded in aMNG datastream,
can also be
PNG_INTRAPIXEL_ DIFFERENCING)

If you call png_set IHDR(), the call must appear before any of the other png_set_*() functions,

because they might require access to some of the IHDR settings. The remaining png_set_*() functions
can be called in any order.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

If you wish, you can reset the compression_type, interlace type, or filter_method later by calling
png_set IHDR() again; if you do this, the width, height, bit_depth, and color_type must be the samein
each call.

png_set_PLTE(png_ptr, info_ptr, palette,
num_palette);

palette - the palette for the file
(array of png_color)
num_palette - number of entriesin the palette

png_set gAMA(png_ptr, info_ptr, file_gamma);
png_set gAMA_fixed(png_ptr, info_ptr, int_file_gamma);

file_gamma - the gamma at which the image was
created (PNG_INFO_gAMA)

int_file_gamma - 100,000 times the gamma at which
the image was created

png_set cHRM(png_ptr, info_ptr, white_x, white_y, red_x, red_y,
green_x, green_y, blue x, blue_y)

png_set_ cHRM_XY Z(png_ptr, info_ptr, red X, red Y, red_Z, green_X,
green Y, green_Z, blue X, blue Y, blue _Z)

png_set cHRM_fixed(png_ptr, info_ptr, int_white X, int_white vy,
int_red x,int_red vy, int_green X, int_green vy,
int_blue x, int_blue_y)

png_set cHRM_XYZ_fixed(png_ptr, info_ptr, int_red_X, int_red_Y,
int_red Z,int_green_X, int_green_ Y, int_green Z,
int_blue X, int_blue Y, int_blue Z)

{whitered,green,blue} {x,y}
A color space encoding specified using the chromaticities
of the end points and the white point.

{red,green,blue} _{X,Y,Z}
A color space encoding specified using the encoding end
points - the CIE tristimulus specification of the intended
color of thered, green and blue channelsin the PNG RGB

June 21, 2023 LIBPNG(3)

LIBPNG(3)

FreeBSD Library Functions Manual

data. The white point is simply the sum of the three end

points.

png_set sSRGB(png_ptr, info_ptr, srgb_intent);

srgb_intent - the rendering intent

(PNG_INFO_sRGB) The presence of
the SRGB chunk means that the pixel
dataisin the SRGB color space.

This chunk also implies specific

values of gAMA and cHRM. Rendering
intent isthe CSS-1 property that

has been defined by the International
Color Consortium
(http://www.color.org).

It can be one of
PNG_sRGB_INTENT_SATURATION,
PNG_sRGB_INTENT_PERCEPTUAL,
PNG_sRGB_INTENT_ABSOLUTE, or
PNG_sRGB_INTENT_RELATIVE.

png_set SRGB_gAMA_and_cHRM ((png_ptr, info_ptr,
srgb_intent);

srgb_intent - the rendering intent

(PNG_INFO_sRGB) The presence of the
SRGB chunk means that the pixel
dataisin the sRGB color space.

This function also causes gAMA and
cHRM chunks with the specific values
that are consistent with SRGB to be
written.

png_set iCCP(png_ptr, info_ptr, name, compression_type,

name

profile, proflen);

- The profile name.

compression_type - The compression type; aways

June 21, 2023

LIBPNG(3)

LIBPNG(3)

LIBPNG(3)

profile

proflen

FreeBSD Library Functions Manual

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
Y ou may give NULL to this argument to
ignoreit.

- International Color Consortium color
profile data. May contain NULSs.

- length of profile datain bytes.

png_set sBIT(png_ptr, info_ptr, sig_bit);

sig_bit

- the number of significant bits for
(PNG_INFO_sBIT) each of the gray, red,
green, and blue channels, whichever are
appropriate for the given color type
(png_color_16)

png_set tRNS(png_ptr, info_ptr, trans_alpha,
num_trans, trans_color);

trans_apha - array of apha (transparency)

entries for palette (PNG_INFO_tRNYS)

num_trans - number of transparent entries

(PNG_INFO_tRNS)

trans_color - graylevel or color sample values

(inorder red, green, blue) of the
single transparent color for
non-paletted images (PNG_INFO_tRNYS)

png_set eXIf_1(png_ptr, info_ptr, num_exif, exif);

exif

- Exif profile (array of
png_byte) (PNG_INFO_eXIf)

png_set hIST(png_ptr, info_ptr, hist);

hist

- histogram of palette (array of
png_uint_16) (PNG_INFO_hIST)

June 21, 2023

LIBPNG(3)

LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_set tIME(png_ptr, info_ptr, mod_time);

mod_time - timeimage was last modified
(PNG_VALID_tIME)

png_set bKGD(png_ptr, info_ptr, background);

background - background color (of type
png_color_16p) (PNG_VALID_bKGD)

png_set text(png_ptr, info_ptr, text_ptr, num_text);

text_ptr - array of png_text holding image
comments

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt
text_ptr[i].key - keyword for comment. Must contain
1-79 characters.
text_ptr[i].text - text comments for current
keyword. Can be NULL or empty.
text_ptr[i].text_length - length of text string,
after decompression, O for iTXt
text_ptr[i].itxt_length - length of itxt string,
after decompression, O for tEXt/zZTXt
text_ptr[i].lang - language of comment (NULL or
empty for unknown).
text_ptr[i].translated_keyword - keyword in UTF-8 (NULL
or empty for unknown).

Note that the itxt_|length, lang, and lang_key

members of the text_ptr structure only exist when the
library isbuilt with iTXt chunk support. Prior to
libpng-1.4.0 the library was built by default without
ITXt support. Also note that when iTXt is supported,
they contain NULL pointers when the "compression”
field contains PNG_TEXT_COMPRESSION_NONE or

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_TEXT_COMPRESSION_zTXt.
num text - number of comments

png_set_sPLT(png_ptr, info_ptr, & palette_ptr,
num_spal ettes);

palette ptr - array of png_sPLT_struct structures
to be added to the list of palettes
in the info structure.

num_spalettes - number of palette structures to be
added.

png_set oFFs(png_ptr, info_ptr, offset_x, offset vy,
unit_type);

offset_x - positive offset from the | eft
edge of the screen

offset y - positive offset from the top
edge of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_set pHY s(png_ptr, info_ptr, res X, res vy,

unit_type);
res x - pixels/unit physical resolution
in x direction

resy - pixelsunit physical resolution
iny direction

unit_type - PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_set sCAL(png_ptr, info_ptr, unit, width, height)

unit - physical scale units (an integer)

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

width - width of apixel in physical scale units

height - height of apixe in physical scale units
(width and height are doubles)

png_set_sCAL_s(png_ptr, info_ptr, unit, width, height)
unit - physical scale units (an integer)

width - width of apixel in physical scale units
expressed as a string

height - height of apixel in physical scale units
(width and height are strings like "2.54")

png_set_unknown_chunks(png_ptr, info_ptr, & unknowns,
num_unknowns)

unknowns - array of png_unknown_chunk
structures holding unknown chunks
unknowng[i].name - name of unknown chunk
unknowng|i].data - data of unknown chunk
unknowngli].size - size of unknown chunk’s data
unknowng[i].location - position to write chunk in file
0: do not write chunk
PNG_HAVE_IHDR: before PLTE
PNG_HAVE_PLTE: before IDAT
PNG_AFTER_IDAT: after IDAT

The "location™ member is set automatically according to what part of the output file has already been
written. Y ou can change its value after calling png_set_unknown_chunks() as demonstrated in
pngtest.c. Within each of the "locations’, the chunks are sequenced according to their position in the
structure (that is, the value of "i", which isthe order in which the chunk was either read from the input
file or defined with png_set_unknown_chunks).

A quick word about text and num_text. text isan array of png_text structures. num_text is the number
of valid structuresin the array. Each png_text structure holds alanguage code, a keyword, atext value,

and a compression type.

The compression types have the same valid numbers as the compression types of the image data.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Currently, the only valid number is zero. However, you can store text either compressed or
uncompressed, unlike images, which always have to be compressed. So if you don’t want the text
compressed, set the compression typeto PNG_TEXT_COMPRESSION_NONE. BecausetEXt and
ZTXt chunks don’t have a language field, if you specify PNG_TEXT_COMPRESSION_NONE or
PNG_TEXT_COMPRESSION_zTXt any language code or translated keyword will not be written out.
Until text gets around a few hundred bytes, it is not worth compressing it. After the text has been
written out to the file, the compression typeis set to PNG_TEXT_COMPRESSION_NONE_WR or
PNG_TEXT_COMPRESSION zTXt WR, sothat itisn't written out again at the end (in case you are
calling png_write_end() with the same struct).

The keywords that are given in the PNG Specification are:

Title Short (oneline) title or
caption for image

Author Name of image's creator
Description Description of image (possibly long)
Copyright Copyright notice

Creation Time Time of original image creation
(usually RFC 1123 format, see below)

Software Software used to create the image

Disclaimer Legal disclaimer

Warning Warning of nature of content
Source Device used to create the image
Comment Miscellaneous comment; conversion

from other image format

The keyword-text pairs work like this. Keywords should be short simple descriptions of what the
comment is about. Some typical keywords are found in the PNG specification, asis some
recommendations on keywords. Y ou can repeat keywordsin afile. You can even write some text
before the image and some after. For example, you may want to put a description of the image before

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

the image, but leave the disclaimer until after, so viewers working over modem connections don’t have
to wait for the disclaimer to go over the modem before they start seeing theimage. Finally, keywords
should be full words, not abbreviations. Keywords and text are in the SO 8859-1 (Latin-1) character
set (asuperset of regular ASCII) and can not contain NUL characters, and should not contain control or
other unprintable characters. To make the comments widely readable, stick with basic ASCII, and
avoid machine specific character set extensions like the IBM-PC character set. The keyword must be
present, but you can leave off the text string on hon-compressed pairs. Compressed pairs must have a
text string, as only the text string is compressed anyway, so the compression would be meaningless.

PNG supports modification time viathe png_time structure. Two conversion routines are provided,
png_convert_from time_t() for time_t and png_convert_from_struct_tm() for struct tm. Thetime t
routine uses gmtime(). Y ou don’t have to use either of these, but if you wish to fill in the png_time
structure directly, you should provide the time in universal time (GMT) if possible instead of your local
time. Note that the year number isthe full year (e.g. 1998, rather than 98 - PNG isyear 2000
compliant!), and that months start with 1.

If you want to store the time of the original image creation, you should use a plain tEXt chunk with the
"Creation Time" keyword. Thisis necessary because the "creation time" of a PNG image is somewhat
vague, depending on whether you mean the PNG file, the time the image was created in a non-PNG
format, a still photo from which the image was scanned, or possibly the subject matter itself. In order
to facilitate machine-readable dates, it is recommended that the "Creation Time" tEXt chunk use RFC
1123 format dates (e.g. "22 May 1997 18:07:10 GMT"), although thisisn’t arequirement. Unlike the
tIME chunk, the "Creation Time" tEXt chunk is not expected to be automatically changed by the
software. To facilitate the use of RFC 1123 dates, afunction png_convert_to_rfc1123 buffer(buffer,
png_timep) is provided to convert from PNG time to an RFC 1123 format string. The caller must
provide awriteable buffer of at least 29 bytes.

Writing unknown chunks
Y ou can use the png_set_unknown_chunks function to queue up private chunks for writing. You give
it achunk name, location, raw data, and asize. Y ou also must use png_set_keep_unknown_chunks()
to ensure that libpng will handlethem. That's all thereistoit. The chunkswill be written by the next
following png_write_info_before PLTE, png_write_info, or png_write_end function, depending upon
the specified location. Any chunks previously read into the info structure's unknown-chunk list will
also be written out in a sequence that satisfies the PNG specification’s ordering rules.

Here is an example of writing two private chunks, prVt and miNE:

#ifdef PNG_WRITE_UNKNOWN_CHUNKS _SUPPORTED
/* Set unknown chunk data*/

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_unknown_chunk unk_chunk[2];
strepy((char *) unk_chunk[0].name, "prvt";
unk_chunk[Q].data = (unsigned char *) "PRIVATE DATA";
unk_chunk[Q].size = strlen(unk_chunk[0].data)+1;
unk_chunk[Q].location = PNG_HAVE_IHDR,;
strepy((char *) unk_chunk[1].name, "miNE";
unk_chunk[1].data= (unsigned char *) "MY CHUNK DATA";
unk_chunk[1].size = strlen(unk_chunk[0] .data)+1,;
unk_chunk[1].location = PNG_AFTER_IDAT;
png_set_unknown_chunks(write ptr, write_info_ptr,
unk_chunk, 2);
/* Needed because miNE is not safe-to-copy */
png_set_keep _unknown_chunks(png, PNG_HANDLE_CHUNK_ALWAYS,
(png_bytep) "miNE", 1);
#if PNG_LIBPNG_VER < 10600
/* Deal with unknown chunk location bug in 1.5.x and earlier */
png_set unknown_chunk_location(png, info, 0, PNG_HAVE_IHDR);
png_set unknown_chunk_location(png, info, 1, PNG_AFTER_IDAT);
endif
#if PNG_LIBPNG_VER < 10500
/* PNG_AFTER_IDAT writes two copies of the chunk prior to libpng-1.5.0,
* one before IDAT and another after IDAT, so don't useit; only use
* PNG_HAVE_IHDR location. This call resetsthe location previously
* set by assignment and png_set_unknown_chunk_location() for chunk 1.
*/
png_set unknown_chunk_location(png, info, 1, PNG_HAVE_IHDR);
endif
#Hendif

Thehigh-level writeinterface
At this point there are two ways to proceed; through the high-level write interface, or through a
sequence of low-level write operations. Y ou can use the high-level interface if your image datais
present in theinfo structure. All defined output transformations are permitted, enabled by the
following masks.

PNG_TRANSFORM_IDENTITY No transformation

PNG_TRANSFORM_PACKING Pack 1, 2 and 4-bit samples

PNG_TRANSFORM_PACKSWAP Change order of packed
pixelsto LSB first

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalize pixelsto the
SBIT depth
PNG_TRANSFORM_BGR Flip RGB to BGR, RGBA
to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA
to AG
PNG_TRANSFORM_INVERT_ALPHA Change alpha from opacity
to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_STRIP_FILLER Strip out filler
bytes (deprecated).
PNG_TRANSFORM_STRIP_FILLER BEFORE Strip out leading
filler bytes
PNG_TRANSFORM_STRIP_FILLER_AFTER Strip out trailing
filler bytes

If you have valid image data in the info structure (you can use png_set_rows() to put image datain the
info structure), ssimply do this:

png_write_png(png_ptr, info_ptr, png_transforms, NULL)
where png_transformsis an integer containing the bitwise OR of some set of transformation flags.
Thiscall is equivaent to png_write_info(), followed the set of transformations indicated by the

transform mask, then png_write_image(), and finaly png_write_end().

(The final parameter of this call is not yet used. Someday it might point to transformation parameters
required by some future output transform.)

Y ou must use png_transforms and not call any png_set_transform() functions when you use

png_write_png().

Thelow-level writeinterface
If you are going the low-level route instead, you are now ready to write all the file information up to
the actual image data. Y ou do thiswith acall to png_write info().
png_write_info(png_ptr, info_ptr);

Note that there is one transformation you may need to do before png_write_info(). In PNG files, the

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

alphachannel in an image isthe level of opacity. If your datais supplied asalevel of transparency,
you can invert the alpha channel before you writeit, so that O is fully transparent and 255 (in 8-hit or
paletted images) or 65535 (in 16-bit images) is fully opague, with

png_set_invert_alpha(png_ptr);

This must appear before png_write_info() instead of later with the other transformations because in the
case of paletted images the tRNS chunk data has to be inverted before the tRNS chunk is written. If
your image is not a pal etted image, the tRNS data (which in such cases represents a single color to be
rendered as transparent) won’'t need to be changed, and you can safely do this transformation after your
png_write_info() call.

If you need to write a private chunk that you want to appear before the PLTE chunk when PLTE is
present, you can write the PNG info in two steps, and insert code to write your own chunk between
them:

png_write_info_before PLTE(png_ptr, info_ptr);
png_set _unknown_chunks(png_ptr, info_ptr, ...);
png_write_info(png_ptr, info_ptr);

After you've written the file information, you can set up the library to handle any special
transformations of the image data. The various ways to transform the data will be described in the
order that they should occur. Thisisimportant, as some of these change the color type and/or bit depth
of the data, and some others only work on certain color types and hit depths. Even though each
transformation checksto seeif it has data that it can do something with, you should make sure to only
enable atransformation if it will be valid for the data. For example, don’'t swap red and blue on
grayscale data.

PNG files store RGB pixels packed into 3 or 6 bytes. This codetellsthe library to strip input data that
has 4 or 8 bytes per pixel down to 3 or 6 bytes (or strip 2 or 4-byte grayscaletfiller datato 1 or 2 bytes
per pixel).

png_set filler(png_ptr, 0, PNG_FILLER_BEFORE);

where the 0 is unused, and the location is either PNG_FILLER BEFORE or PNG_FILLER AFTER,
depending upon whether the filler byte in the pixel is stored XRGB or RGBX.

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can, resulting in, for example,

8 pixels per byte for 1 bit files. If the dataissupplied at 1 pixel per byte, use this code, which will
correctly pack the pixelsinto asingle byte:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_set packing(png_ptr);

PNG files reduce possible bit depthsto 1, 2, 4, 8, and 16. If your datais of another bit depth, you can
write an sBIT chunk into the file so that decoders can recover the original dataif desired.

[* Set the true bit depth of theimage data*/
if (color_type & PNG_COLOR_MASK_COLOR)

{
sig_bit.red = true_bit_depth;
sig_hit.green = true_bit_depth;
sig_bit.blue = true_bit_depth;
}

else

{
sig_bit.gray = true_bit_depth;

}

if (color_type & PNG_COLOR_MASK_ALPHA)

{
sig_hit.alpha = true_bit_depth;

}
png_set sBIT(png_ptr, info_ptr, &sig_bit);

If the dataiis stored in the row buffer in a bit depth other than one supported by PNG (e.g. 3 bit datain
the range 0-7 for a4-bit PNG), thiswill scale the values to appear to be the correct bit depth asis
required by PNG.

png_set_shift(png_ptr, &sig_bit);
PNG files store 16-bit pixelsin network byte order (big-endian, ie. most significant bitsfirst). This
code would be used if they are supplied the other way (little-endian, i.e. least significant bits first, the

way PCs store them):

if (bit_depth > 8)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change the order the pixels
are packed into bytes, you can use:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

if (bit_depth < 8)
png_set_packswap(png_ptr);

PNG files store 3 color pixelsin red, green, blue order. This code would be used if they are supplied as
blue, green, red:

png_set_bgr(png_ptr);

PNG files describe monochrome as black being zero and white being one. This code would be used if
the pixels are supplied with this reversed (black being one and white being zero):

png_set_invert_mono(png_ptr);

Finally, you can write your own transformation function if none of the existing ones meets your needs.
Thisis done by setting a callback with

png_set write user_transform_fn(png_ptr,
write_transform_fn);

Y ou must supply the function

void write_transform_fn(png_structp png_ptr, png_row_infop
row_info, png_bytep data)

See pngtest.c for aworking example. Y our function will be called before any of the other
transformations are processed. |f supported libpng also supplies an information routine that may be

called from your callback:

png_get_current_row_number(png_ptr);
png_get_current_pass_number(png_pitr);

Thisreturns the current row passed to the transform. With interlaced images the value returned is the
row in the input sub-imageimage. Use PNG_ROW_FROM_PASS ROW(row, pass) and
PNG_COL_FROM_PASS COL(col, pass) to find the output pixel (x,y) given an interlaced sub-image
pixel (row,col,pass).

The discussion of interlace handling above contains more information on how to use these values.

Y ou can also set up apointer to a user structure for use by your callback function.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_set user_transform_info(png_ptr, user_ptr, 0, 0);

The user_channels and user_depth parameters of this function are ignored when writing; you can set
them to zero as shown.

Y ou can retrieve the pointer viathe function png_get_user_transform_ptr(). For example:

voidp write_user_transform_ptr =
png_get user_transform_ptr(png_ptr);

It is possible to have libpng flush any pending output, either manually, or automatically after a certain
number of lines have been written. To flush the output stream a single time call:

png_write_flush(png_ptr);

and to have libpng flush the output stream periodically after a certain number of scanlines have been
written, call:

png_set flush(png_ptr, nrows);

Note that the distance between rows is from the last time png_write_flush() was called, or the first row
of theimageif it has never been called. So if you write 50 lines, and then png_set_flush 25, it will
flush the output on the next scanline, and every 25 lines thereafter, unless png_write flush() is called
before 25 more lines have been written. If nrowsistoo small (less than about 10 lines for a 640 pixel
wide RGB image) the image compression may decrease noticeably (although this may be acceptable
for real-time applications). Infrequent flushing will only degrade the compression performance by a
few percent over images that do not use flushing.

Writing theimage data
That’sit for the transformations. Now you can write the image data. The simplest way to do thisisin
one function cal. If you have the whole image in memory, you can just call png_write_image() and
libpng will write theimage. Y ou will need to passin an array of pointersto each row. Thisfunction
automatically handles interlacing, so you don't need to call png_set_interlace_handling() or call this
function multiple times, or any of that other stuff necessary with png_write_rows().

png_write_image(png_ptr, row_pointers);

where row_pointersis:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_byte *row_pointergheight];
Y ou can point to void or char or whatever you use for pixels.

If you don’t want to write the whole image at once, you can use png_write_rows() instead. If thefileis
not interlaced, thisis simple:

png_write_rows(png_ptr, row_pointers,
number_of rows);

row_pointersisthe same asin the png_write_image() call.

If you are just writing one row at atime, you can do thiswith asingle row_pointer instead of an array
of row_pointers:

png_bytep row_pointer = row;

png_write_row(png_ptr, row_pointer);
When thefileisinterlaced, things can get a good deal more complicated. The only currently (as of the
PNG Specification version 1.2, dated July 1999) defined interlacing scheme for PNG filesisthe
"Adam7" interlace scheme, that breaks down an image into seven smaller images of varying size.
libpng will build these images for you, or you can do them yourself. If you want to build them
yourself, see the PNG specification for details of which pixelsto write when.
If you don’t want libpng to handle the interlacing details, just use png_set_interlace handling() and call
png_write_rows() the correct number of timesto write all the sub-images
(png_set_interlace_handling() returns the number of sub-images.)
If you want libpng to build the sub-images, call this before you start writing any rows:

number_of _passes = png_set_interlace_handling(png_ptr);

Thiswill return the number of passes needed. Currently, thisis seven, but may change if another
interlace type is added.

Then write the complete image number_of passes times.

png_write_rows(png_ptr, row_pointers, number_of_rows);

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Think carefully before you write an interlaced image. Typically code that reads such images reads all
the image data into memory, uncompressed, before doing any processing. Only code that can display
an image on the fly can take advantage of the interlacing and even then the image has to be exactly the
correct size for the output device, because scaling an image requires adjacent pixels and these are not
available until all the passes have been read.

If you do write an interlaced image you will hardly ever need to handle the interlacing yourself. Call
png_set_interlace_handling() and use the approach described above.

The only timeit is conceivable that you will really need to write an interlaced image pass-by-passis
when you have read one pass by pass and made some pixel-by-pixel transformation to it, as described
in the read code above. Inthiscase usethe PNG_PASS ROWS and PNG_PASS COLS macrosto
determine the size of each sub-image in turn and simply write the rows you obtained from the read
code.

Finishing a sequential write
After you are finished writing the image, you should finish writing the file. If you are interested in
writing comments or time, you should pass an appropriately filled png_info pointer. If you are not
interested, you can pass NULL.

png_write_end(png_ptr, info_ptr);
When you are done, you can free all memory used by libpng like this:
png_destroy write struct(&png_ptr, &info_ptr);

It isaso possible to individually free theinfo_ptr members that point to libpng-allocated storage with
the following function:

png_free_data(png_ptr, info_ptr, mask, seq)

mask - identifies data to be freed, a mask

containing the bitwise OR of one or

more of
PNG_FREE _PLTE, PNG_FREE _TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE SCAL,PNG FREE SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

or smply PNG_FREE ALL

seq - sequence number of item to be freed
(-1for al items)

This function may be safely called when the relevant storage has already been freed, or has not yet

been allocated, or was allocated by the user and not by libpng, and will in those cases do nothing. The
"seq" parameter isignored if only oneitem of the selected datatype, such as PLTE, isalowed. If

"seq" isnot -1, and multiple items are allowed for the data type identified in the mask, such astext or
SPLT, only the n'th item in the structure is freed, where nis "seq".

If you allocated data such as a palette that you passed in to libpng with png_set *, you must not free it
until just before the call to png_destroy_write_struct().

The default behavior is only to free data that was allocated internally by libpng. This can be changed,
so that libpng will not free the data, or so that it will free data that was allocated by the user with
png_malloc() or png_caloc() and passed in viaapng_set_*() function, with

png_data freer(png_ptr, info_ptr, freer, mask)

freer - one of
PNG _DESTROY _WILL _FREE DATA
PNG SET WILL FREE DATA
PNG_USER WILL_FREE DATA

mask - which data elements are affected
same choicesasin png_free data()

For example, to transfer responsibility for some data from aread structure to a write structure, you
could use

png_data freer(read ptr, read_info_ptr,
PNG_USER WILL_FREE DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)
png_data freer(write ptr, write_info_ptr,
PNG_DESTROY_WILL_FREE_DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

thereby briefly reassigning responsibility for freeing to the user but immediately afterwards reassigning

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

it once more to the write_destroy function. Having done this, it would then be safe to destroy the read
structure and continue to use the PLTE, tRNS, and hlST data in the write structure.

This function only affects data that has already been allocated. Y ou can call this function before
calling after the png_set_*() functions to control whether the user or png_destroy_*() is supposed to
freethe data. When the user assumes responsihility for libpng-allocated data, the application must use
png_free() to freeit, and when the user transfers responsibility to libpng for data that the user has
allocated, the user must have used png_malloc() or png_calloc() to alocateit.

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated keyword separately, do not transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a png_text structure it combines
these members with the key member, and png_free data() will free only text_ptr.key. Similarly, if you
transfer responsibility for free’ing text_ptr from libpng to your application, your application must not
separately free those members. For a more compact example of writing a PNG image, see the file
example.c.

V. Simplified API
The simplified API, which became available in libpng-1.6.0, hides the details of both libpng and the
PNG file format itself. It allows PNG filesto be read into avery limited number of in-memory bitmap
formats or to be written from the same formats. If these formats do not accommodate your needs then
you can, and should, use the more sophisticated APIs above - these support awide variety of in-
memory formats and awide variety of sophisticated transformations to those formats as well asawide
variety of APIsto manipulate ancillary information.

Toread a PNG file using the simplified API:
1) Declarea’png_image’ structure (see below) on the stack, set the
version field to PNG_IMAGE_VERSION and the ' opagque’ pointer to NULL
(thisis REQUIRED, your program may crash if you don’t doit.)
2) Call the appropriate png_image_begin_read... function.
3) Set the png_image 'format’ member to the required sample format.

4) Allocate a buffer for the image and, if required, the color-map.

5) Call png_image_finish_read to read the image and, if required, the
color-map into your buffers.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

There are no restrictions on the format of the PNG input itself; all valid color types, bit depths, and
interlace methods are acceptable, and the input image is transformed as necessary to the requested in-
memory format during the png_image finish read() step. The only caveat isthat if you request a
color-mapped image from a PNG that is full-color or makes complex use of an aphachannel the
transformation is extremely lossy and the result may ook terrible.

TowriteaPNG file using the simplified API:

1) Declarea’png_image’ structure on the stack and memset()
it to al zero.

2) Initialize the members of the structure that describe the
image, setting the’format” member to the format of the
image samples.

3) Call the appropriate png_image write... function with a
pointer to the image and, if necessary, the color-map to write
the PNG data.

png_image is a structure that describes the in-memory format of an image when it is being read or
defines the in-memory format of an image that you need to write. The "png_image" structure contains
the following members:

png_controlp opague Initialize to NULL, free with png_image free
png_uint_32 version Set to PNG_IMAGE_VERSION

png_uint_32 width Image width in pixels (columns)

png_uint_32 height Image height in pixels (rows)

png_uint_32 format Image format as defined below

png_uint_32 flags A bit mask containing informational flags
png_uint_32 colormap_entries; Number of entries in the color-map
png_uint_32 warning_or_error;

char message] 64];

In the event of an error or warning the "warning_or_error" field will be set to a non-zero value and the
"message’ field will containa’ * terminated string with the libpng error or warning message. If both
warnings and an error were encountered, only the error is recorded. If there are multiple warnings,
only thefirst oneis recorded.

The upper 30 bits of the "warning_or_error" value are reserved; the low two bits contain atwo bit code
such that avalue more than 1 indicates afailurein the API just called:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

0 - nowarning or error

1- warning

2 - error

3 - error preceded by warning

The pixels (samples) of the image have one to four channels whose components have origina valuesin
therange 0 to 1.0:

1: A single gray or luminance channel (G).

2: A gray/luminance channel and an apha channel (GA).
3: Three red, green, blue color channels (RGB).

4. Three color channels and an alpha channel (RGBA).

The channels are encoded in one of two ways:

a) Asasmall integer, value 0..255, contained in asingle byte. For the alpha channel the original
valueis simply value/255. For the color or luminance channels the value is encoded according to the
SRGB specification and matches the 8-bit format expected by typical display devices.

The color/gray channels are not scaled (pre-multiplied) by the alpha channel and are suitable for
passing to color management software.

b) Asavaluein therange 0..65535, contained in a 2-byte integer, in the native byte order of the
platform on which the application is running. All channels can be converted to the original value by
dividing by 65535; all channels are linear. Color channels use the RGB encoding (RGB end-points) of
the sSRGB specification. Thisencoding isidentified by the PNG_FORMAT_FLAG_LINEAR flag
below.

When the smplified API needs to convert between sRGB and linear colorspaces, the actual SRGB
transfer curve defined in the SRGB specification (see the article at https://en.wikipedia.org/wiki/SRGB)
is used, not the gamma=1/2.2 approximation used elsewhere in libpng.

When an alpha channel is present it is expected to denote pixel coverage of the color or luminance
channels and is returned as an associated a pha channel: the color/gray channels are scaled (pre-
multiplied) by the alpha value.

The samples are either contained directly in the image data, between 1 and 8 bytes per pixel according
to the encoding, or are held in a color-map indexed by bytesin the image data. In the case of a color-
map the color-map entries are individual samples, encoded as above, and the image data has one byte
per pixel to select the relevant sample from the color-map.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_FORMAT *

The #defines to be used in png_image::format. Each #define identifies a particular layout of channel
dataand, if present, alphavalues. There are separate defines for each of the two component encodings.

A format is built up using single bit flag values. All combinations are valid. Formats can be built up
from the flag values or you can use one of the predefined values below. When testing formats always
use the FORMAT_FLAG macrosto test for individual features - future versions of the library may add
new flags.

When reading or writing color-mapped images the format should be set to the format of the entriesin
the color-map then png_image {read,write} _colormap called to read or write the color-map and set the
format correctly for the image data. Do not set the PNG_FORMAT_FLAG_COLORMAP bit directly!

NOTE: libpng can be built with particul ar features disabled. If you see compiler errors because the
definition of one of the following flags has been compiled out it is because libpng does not have the
required support. It ispossible, however, for the libpng configuration to enable the format on just read
or just write; in that case you may see an error at runtime. Y ou can guard against this by checking for
the definition of the appropriate " SUPPORTED" macro, one of:

PNG_SIMPLIFIED_{READ,WRITE}_{BGR,AFIRST}_SUPPORTED

PNG_FORMAT_FLAG_ALPHA format with an apha channel
PNG_FORMAT_FLAG_COLOR color format: otherwise grayscale
PNG_FORMAT_FLAG_LINEAR 2-byte channels else 1-byte
PNG_FORMAT_FLAG_COLORMAP image datais color-mapped
PNG FORMAT FLAG BGR BGR colors, else order is RGB
PNG_FORMAT_FLAG_AFIRST aphachannel comesfirst

Supported formats are as follows. Future versions of libpng may support more formats; for
compatibility with older versions simply check if the format macro is defined using #ifdef. These
defines describe the in-memory layout of the components of the pixels of the image.

First the single byte (SRGB) formats:

PNG_FORMAT_GRAY
PNG_FORMAT_GA
PNG_FORMAT AG
PNG_FORMAT_RGB
PNG_FORMAT BGR

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_FORMAT_RGBA
PNG_FORMAT_ARGB
PNG_FORMAT_BGRA
PNG_FORMAT ABGR

Then the linear 2-byte formats. When naming these "Y" is used to indicate a luminance (gray) channel.
The component order within the pixel is aways the same - thereis no provision for swapping the order

of the componentsin the linear format. The components are 16-bit integersin the native byte order for

your platform, and there is no provision for swapping the bytes to a different endian condition.

PNG_FORMAT _LINEAR_Y
PNG_FORMAT _LINEAR_Y_ALPHA
PNG_FORMAT _LINEAR_RGB
PNG_FORMAT_LINEAR _RGB_ALPHA

With color-mapped formats the image data is one byte for each pixel. The byteis an index into the
color-map which is formatted as above. To obtain a color-mapped format it is sufficient just to add the
PNG_FOMAT_FLAG_COLORMAP to one of the above definitions, or you can use one of the
definitions below.

PNG_FORMAT_RGB_COLORMAP
PNG_FORMAT _BGR_COLORMAP
PNG_FORMAT _RGBA_COLORMAP
PNG_FORMAT _ARGB_COLORMAP
PNG_FORMAT _BGRA_COLORMAP
PNG_FORMAT _ABGR_COLORMAP

PNG_IMAGE macros

These are convenience macros to derive information from a png_image structure. The
PNG_IMAGE_SAMPLE_ macros return values appropriate to the actual image sample values - either
the entries in the color-map or the pixelsin theimage. The PNG_IMAGE_PIXEL _ macros return
corresponding values for the pixels and will always return 1 for color-mapped formats. The remaining
macros return information about the rows in the image and the complete image.

NOTE: All the macros that take a png_image::format parameter are compile time constantsiif the
format parameter is, itself, a constant. Therefore these macros can be used in array declarations and
case labels where required. Similarly the macros are also pre-processor constants (sizeof is not used)
so they can be used in #if tests.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_IMAGE_SAMPLE_CHANNEL S(fmt)
Returns the total number of channelsin agiven format: 1..4

PNG_IMAGE_SAMPLE_COMPONENT_SIZE(fmt)
Returns the size in bytes of a single component of a pixel or color-map
entry (as appropriate) in theimage: 1 or 2.

PNG_IMAGE_SAMPLE_SIZE(fmt)
Thisisthe size of the sample datafor one sample. If theimageis
color-mapped it is the size of one color-map entry (and image pixels are
one bytein size), otherwise it is the size of one image pixel.

PNG_IMAGE_MAXIMUM_COLORMAP_COMPONENTS(fmt)
The maximum size of the color-map required by the format expressed in a
count of components. This can be used to compile-time allocate a
color-map:

png_uint_16 colormap[PNG_IMAGE_MAXIMUM_COLORMAP_COMPONENTS(linear_fmt)];

png_byte colormap[PNG_IMAGE_MAXIMUM_COLORMAP_COMPONENTS(sRGB_fmt)];

Alternatively use the PNG_IMAGE_COLORMAP_SIZE macro below to use the
information from one of the png_image _begin _read APIs and dynamically
allocate the required memory.

PNG_IMAGE_COLORMAP_SIZE(fmt)

The size of the color-map required by the format; thisisthe size of the
color-map buffer passed to the png_image {read,write} colormap APIs. Itis
afixed number determined by the format so can easily be allocated on the
stack if necessary.

Corresponding information about the pixels
PNG_IMAGE_PIXEL_CHANNEL S(fmt)
The number of separate channels (components) in apixel; 1 for a
color-mapped image.
PNG_IMAGE_PIXEL_COMPONENT_SIZE(fmt) The size, in bytes, of each component in apixel;

1 for a color-mapped
image.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_IMAGE_PIXEL_SIZE(fmt)
The size, in bytes, of acomplete pixel; 1 for a color-mapped image.

Information about the whole row, or whole image

PNG_IMAGE_ROW_STRIDE(image)

Returns the total number of components in asingle row of the image; this
isthe minimum "row stride’, the minimum count of components between each
row. For acolor-mapped image thisisthe minimum number of bytesin a
row.

If you need the stride measured in bytes, row_stride bytesis
PNG_IMAGE_ROW_STRIDE(image) * PNG_IMAGE_PIXEL_COMPONENT_SIZE(fmt)
plus any padding bytes that your application might need, for example

to start the next row on a4-byte boundary.

PNG_IMAGE_BUFFER_SIZE(image, row_stride)
Return the size, in bytes, of an image buffer given apng_image and arow
stride - the number of components to leave space for in each row.

PNG_IMAGE_SIZE(image)
Return the size, in bytes, of the image in memory given just a png_image;
the row stride is the minimum stride required for the image.

PNG_IMAGE_COLORMAP_SIZE(image)

Return the size, in bytes, of the color-map of thisimage. If theimage

format is not a color-map format this will return a size sufficient for

256 entriesin the given format; check PNG_FORMAT_FLAG_COLORMAP if
you don’t want to alocate a color-map in this case.

PNG_IMAGE_FLAG *
Flags containing additional information about the image are held in the 'flags’ field of png_image.
PNG_IMAGE_FLAG_COLORSPACE_NOT_sRGB == 0x01
Thisindicates that the RGB values of the in-memory bitmap do not

correspond to the red, green and blue end-points defined by sRGB.

PNG_IMAGE_FLAG_FAST == 0x02
On write emphasise speed over compression; the resultant PNG file will be

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

larger but will be produced significantly faster, particular for large

images. Do not use this option for images which will be distributed, only
used it when producing intermediate files that will be read back in
repeatedly. For atypical 24-bit image the option will double the read
speed at the cost of increasing the image size by 25%, however for many
more compressible images the PNG file can be 10 times larger with only a
dlight speed gain.

PNG_IMAGE_FLAG_16BIT_sRGB == 0x04
Onread if theimage is a 16-hit per component image and there isno gAMA
or SRGB chunk assume that the components are SRGB encoded. Notice that
images output by the ssmplified APl always have gamma information; setting
thisflag only affects the interpretation of 16-bit images from an
external source. It isrecommended that the application expose this flag
to the user; the user can normally easily recognize the difference between
linear and sSRGB encoding. Thisflag has no effect on write - the data
passed to the write APIs must have the correct encoding (as defined
above))

If the flag is not set (the default) input 16-bit per component datais
assumed to be linear.

NOTE: the flag can only be set after the png_image _begin read call,
because that call initializes the’flags' field.

READ APIs

The png_image passed to the read APIs must have been initialized by setting
the png_controlp field ' opaque’ to NULL (or, better, memset the whole thing.)

int png_image_begin read from_file(png_imagep image,
const char *file_name)

The named file is opened for read and the image header
isfilled in from the PNG header in thefile.

int png_image begin read from stdio (png_imagep image,
FILE* file)

The PNG header isread from the stdio FILE object.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

int png_image _begin read from_memory(png_imagep image,
png_const_voidp memory, size t size)

The PNG header is read from the given memory buffer.

int png_image _finish_read(png_imagep image,
png_colorp background, void * buffer,
png_int_32 row_stride, void * colormap));

Finish reading the image into the supplied buffer and
clean up the png_image structure.

row_stride isthe step, in png_byte or png_uint_16 units
as appropriate, between adjacent rows. A positive stride
indicates that the top-most row isfirst in the buffer -

the normal top-down arrangement. A negative stride
indicates that the bottom-most row isfirst in the buffer.

background need only be supplied if an alpha channel must
be removed from a png_byte format and the removal isto be
done by compositing on a solid color; otherwise it may be
NULL and any composition will be done directly onto the
buffer. The valueisan sRGB color to use for the
background, for grayscale output the green channel is used.

For linear output removing the alpha channel is always done
by compositing on black.

void png_image_free(png_imagep image)
Free any data allocated by libpng in image->opaque,

setting the pointer to NULL. May be called at any time
after the structure isinitialized.

When the smplified API needs to convert between sRGB and linear colorspaces, the actual SRGB
transfer curve defined in the SRGB specification (see the article at https.//en.wikipedia.org/wiki/SRGB)
is used, not the gamma=1/2.2 approximation used elsewhere in libpng.

WRITE APIS

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

For write you must initialize a png_image structure to describe the image to be written:

version: must be set to PNG_IMAGE_VERSION

opague: must be initialized to NULL

width: image width in pixels

height: image height in rows

format: the format of the data you wish to write

flags: set to 0 unless one of the defined flags applies; set
PNG_IMAGE_FLAG_COLORSPACE_NOT_sRGB for color format images
where the RGB values do not correspond to the colors in sSRGB.

colormap_entries: set to the number of entriesin the color-map (0 to 256)

int png_image_write to _file, (png_imagep image,
const char *file, int convert_to_8hit, const void * buffer,
png_int_32 row_stride, const void * colormap));

Write the image to the named file.
int png_image write_to_memory (png_imagep image, void * memory,
png_aloc size t* PNG_RESTRICT memory_bytes,
int convert_to_8 hit, const void *buffer, ptrdiff_t row_stride,
const void * colormap));
Write the image to memory.
int png_image write to_stdio(png_imagep image, FILE *file,
int convert_to 8 hit, const void *buffer,
png_int_32 row_stride, const void * colormap)
Write the image to the given (FILE*).
With all write APIsif image isin one of the linear formats with (png_uint_16) data then setting
convert_to_8 bit will cause the output to be a (png_byte) PNG gamma encoded according to the sSRGB
specification, otherwise a 16-bit linear encoded PNG fileiswritten.
With all APIsrow_strideis handled as in the read APIs - it is the spacing from one row to the next in
component sized units (float) and if negative indicates a bottom-up row layout in the buffer. If you

pass zero, libpng will calculate the row_stride for you from the width and number of channels.

Note that the write API does not support interlacing, sub-8-bit pixels, indexed (paletted) images, or

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

most ancillary chunks.

VI. Modifying/Customizing libpng
There are two issues here. Thefirst is changing how libpng does standard things like memory
alocation, input/output, and error handling. The second deals with more complicated things like
adding new chunks, adding new transformations, and generally changing how libpng works. Both of
those are compile-time issues; that is, they are generally determined at the time the code is written, and
thereisrarely aneed to provide the user with a means of changing them.

Memory alocation, input/output, and error handling

All of the memory allocation, input/output, and error handling in libpng goes through callbacks that are
user-settable. The default routines are in pngmem.c, pngrio.c, pngwio.c, and pngerror.c, respectively.
To change these functions, call the appropriate png_set_*_fn() function.

Memory alocation is done through the functions png_malloc(), png_calloc(), and png_free(). The
png_malloc() and png_free() functions currently just call the standard C functions and png_calloc()
calls png_malloc() and then clears the newly allocated memory to zero; note that png_calloc(png_ptr,
size) is not the same as the calloc(number, size) function provided by stdlib.h. Thereislimited support
for certain systems with segmented memory architectures and the types of pointers declared by png.h
match this; you will have to use appropriate pointersin your application. If you prefer to use a
different method of allocating and freeing data, you can use png_create read struct_2() or

png_create write_struct_2() to register your own functions as described above. These functions also
provide avoid pointer that can be retrieved via

mem_ptr=png_get_mem_ptr(png_ptr);
Y our replacement memory functions must have prototypes as follows:

png_voidp malloc_fn(png_structp png_ptr,
png_aloc size tsize);

void free_fn(png_structp png_ptr, png_voidp ptr);
Your maloc_fn() must return NULL in case of failure. The png_malloc() function will normally call
png_error() if it receives a NULL from the system memory allocator or from your replacement

malloc_fn().

Your free_fn() will never be called with aNULL ptr, since libpng's png_free() checks for NULL

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

before calling free_fn().

Input/Output in libpng is done through png_read() and png_write(), which currently just call fread()
and fwrite(). The FILE * isstored in png_struct and isinitialized viapng_init_io(). If youwishto
change the method of 1/0O, the library supplies callbacks that you can set through the function
png_set read fn() and png_set_write fn() at run time, instead of calling the png_init_io() function.
These functions also provide avoid pointer that can be retrieved via the function png_get_io_ptr(). For
example:

png_set read fn(png_structp read_ptr,
voidp read io_ptr, png_rw_ptr read data fn)

png_set write_fn(png_structp write ptr,
voidp write_io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

voidp read io_ptr =png_get_io_ptr(read ptr);
voidp write io_ptr = png_get_io_ptr(write ptr);

The replacement I/O functions must have prototypes as follows:

void user_read data(png_structp png_ptr,
png_bytep data, size t length);

void user_write_data(png_structp png_ptr,
png_bytep data, size t length);

void user_flush_data(png_structp png_ptr);
The user_read_data() function is responsible for detecting and handling end-of-data errors.

Supplying NULL for the read, write, or flush functions sets them back to using the default C stream
functions, which expect theio_ptr to point to a standard *FILE structure. It isprobably a mistake to
use NULL for one of write_data fn and output_flush_fn but not both of them, unless you have built
libpng with PNG_NO WRITE_FLUSH defined. Itisan error to read from awrite stream, and vice
versa.

Error handling in libpng is done through png_error() and png_warning(). Errors handled through

png_error() are fatal, meaning that png_error() should never return to its caller. Currently, thisis
handled via setjmp() and longjmp() (unless you have compiled libpng with PNG_NO_SETJIMP, in

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

which caseit is handled viaPNG_ABORT()), but you could change this to do things like exit() if you
should wish, aslong as your function does not return.

On non-fatal errors, png_warning() is called to print a warning message, and then control returnsto the
calling code. By default png_error() and png_warning() print a message on stderr viafprintf() unless
the library is compiled with PNG_NO_CONSOLE_|O defined (because you don’t want the messages)
or PNG_NO_STDIO defined (because fprintf() isn’t available). If you wish to change the behavior of
the error functions, you will need to set up your own message callbacks. These functions are normally
supplied at the time that the png_struct is created. It isalso possible to redirect errors and warnings to
your own replacement functions after png_create * _struct() has been called by calling:

png_set_error_fn(png_structp png_ptr,
png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);

If NULL issupplied for either error_fn or warning_fn, then the libpng default function will be used,
calling fprintf() and/or longjmp() if a problem is encountered. The replacement error functions should
have parameters as follows:

void user_error_fn(png_structp png_ptr,
png_const_charp error_msg);

void user_warning_fn(png_structp png_ptr,
png_const_charp warning_msg);

Then, within your user_error_fn or user_warning_fn, you can retrieve the error_ptr if you need it, by
caling

png_voidp error_ptr = png_get_error_ptr(png_ptr);

The motivation behind using setjmp() and longjmp() is the C++ throw and catch exception handling
methods. This makes the code much easier to write, as thereis no need to check every return code of
every function call. However, there are some uncertainties about the status of local variables after a
longjmp, so the user may want to be careful about doing anything after setjmp returns non-zero besides
returning itself. Consult your compiler documentation for more details. For an aternative approach,
you may wish to use the "cexcept"” facility (see https.//cexcept.sourceforge.io/), whichisillustrated in
pngvalid.c and in contrib/visupng.

Beginning in libpng-1.4.0, the png_set_benign_errors() APl became available. Y ou can use thisto
handle certain errors (normally handled as errors) as warnings.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_set benign_errors (png_ptr, int allowed);

allowed: O: treat png_benign_error() as an error.
1: treat png_benign_error() as awarning.

Asof libpng-1.6.0, the default condition isto treat benign errors as warnings while reading and as
errors while writing.

Custom chunks
If you need to read or write custom chunks, you may need to get deeper into the libpng code. The
library now has mechanisms for storing and writing chunks of unknown type; you can even declare
callbacks for custom chunks. However, this may not be good enough if the library code itself needs to
know about interactions between your chunk and existing ‘intrinsic’ chunks.

If you need to write a new intrinsic chunk, first read the PNG specification. Acquire afirst level of
understanding of how it works. Pay particular attention to the sections that describe chunk names, and
look at how other chunks were designed, so you can do things similarly. Second, check out the
sections of libpng that read and write chunks. Try to find a chunk that is similar to yoursand use it as a
template. More details can be found in the commentsinside the code. It is best to handle private or
unknown chunks in a generic method, via callback functions, instead of by modifying libpng functions.
Thisisillustrated in pngtest.c, which uses a callback function to handle a private "vpAg" chunk and the
new "STER" chunk, which are both unknown to libpng.

If you wish to write your own transformation for the data, look through the part of the code that does
the transformations, and check out some of the simpler ones to get an idea of how they work. Try to
find asimilar transformation to the one you want to add and copy off of it. More details can be found
in the commentsinside the code itself.

Configuring for gui/windowing platfor ms:
Y ou will need to write new error and warning functions that use the GUI interface, as described
previously, and set them to be the error and warning functions at the time that png_create *_struct() is
called, in order to have them available during the structure initialization. They can be changed later via
png_set_error_fn(). On some compilers, you may also have to change the memory alocators
(png_malloc, etc.).

Configuring zlib:
There are special functions to configure the compression. Perhaps the most useful one changes the

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

compression level, which currently usesinput compression valuesin therange 0 - 9. Thelibrary
normally uses the default compression level (Z DEFAULT_COMPRESSION = 6). Tests have shown
that for alarge majority of images, compression vauesin the range 3-6 compress nearly aswell as
higher levels, and do so much faster. For online applications it may be desirable to have maximum
speed (Z_BEST_SPEED = 1). With versions of zlib after v0.99, you can also specify no compression
(Z_NO_COMPRESSION = 0), but thiswould create files larger than just storing the raw bitmap. You
can specify the compression level by calling:

#include zlib.h
png_set compression_level(png_ptr, level);

Another useful oneisto reduce the memory level used by the library. The memory level defaultsto 8,
but it can be lowered if you are short on memory (running DOS, for example, where you only have
640K). Note that the memory level does have an effect on compression; among other things, lower
levelswill result in sections of incompressible data being emitted in smaller stored blocks, with a
correspondingly larger relative overhead of up to 15% in the worst case.

#include zlib.h
png_set compression_mem_level(png_ptr, level);

The other functions are for configuring zlib. They are not recommended for normal use and may result
inwriting an invalid PNG file. See zlib.h for more information on what these mean.

#include zlib.h

png_set compression_strategy(png_ptr,
strategy);

png_set_compression_window_bits(png_ptr,
window_bits);

png_set _compression_method(png_ptr, method);
This controls the size of the IDAT chunks (default 8192):
png_set compression buffer_size(png_ptr, size);

As of libpng version 1.5.4, additional APIs became available to set these separately for non-IDAT
compressed chunks such as zZTXt, iTXt, and iCCP:

#include zlib.h

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

#f PNG_LIBPNG_VER >= 10504
png_set text compression_level(png_ptr, level);

png_set text compression_mem_level(png_ptr, level);

png_set text_compression_strategy(png_ptr,
strategy);

png_set text compression_window_bits(png_ptr,
window_hits);

png_set text compression_method(png_ptr, method);
#endif

Controlling row filtering
If you want to control whether libpng uses filtering or not, which filters are used, and how it goes about
picking row filters, you can call one of these functions. The selection and configuration of row filters
can have a significant impact on the size and encoding speed and a somewhat lesser impact on the
decoding speed of animage. Filtering is enabled by default for RGB and grayscal e images (with and
without alpha), but not for paletted images nor for any images with bit depths less than 8 bits/pixel.

The 'method’ parameter sets the main filtering method, which is currently only *0" in the PNG 1.2
specification. The'filters’ parameter sets which filter(s), if any, should be used for each scanline.
Possible valuesare PNG_ALL_FILTERS, PNG_NO_FILTERS, or PNG_FAST_FILTERS to turn
filtering on and off, or to turn on just the fast-decoding subset of filters, respectively.

Individua filter typesare PNG_FILTER_NONE, PNG_FILTER_SUB, PNG_FILTER_UP,
PNG_FILTER_AVG, PNG_FILTER_PAETH, which can be bitwise ORed together with’|' to specify
one or more filtersto use. Thesefilters are described in more detail in the PNG specification. If you
intend to change the filter type during the course of writing the image, you should start with flags set
for al of the filters you intend to use so that libpng can initialize itsinternal structures appropriately for
all of thefilter types. (Note that this means the first row must always be adaptively filtered, because
libpng currently does not allocate the filter buffers until png_write_row() is called for the first time.)

filters= PNG_NO_FILTERS;
filters= PNG_ALL_FILTERS;
filters= PNG_FAST_FILTERS;

or

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

filters= PNG_FILTER_NONE | PNG_FILTER_SUB |
PNG_FILTER_UP|PNG_FILTER AVG |
PNG_FILTER_PAETH;

png_set filter(png_ptr, PNG_FILTER_TYPE_BASE,
filters);

The second parameter can also be
PNG_INTRAPIXEL_DIFFERENCING if you are
writing a PNG to be embedded in aMNG
datastream. This parameter must be the

same as the value of filter_method used
inpng_set IHDR().

Requesting debug printout
The macro definition PNG_DEBUG can be used to request debugging printout. Set it to an integer
valuein therange 0 to 3. Higher numbers result in increasing amounts of debugging information. The
information is printed to the "stderr” file, unless another file name is specified in the
PNG_DEBUG_FILE macro definition.

When PNG_DEBUG > 0, the following functions (macros) become available:

png_debug(level, message)

png_debugl(level, message, pl)

png_debug2(level, message, pl, p2)
inwhich "level" is compared to PNG_DEBUG to decide whether to print the message, "message” isthe
formatted string to be printed, and pl and p2 are parameters that are to be embedded in the string
according to printf-style formatting directives. For example,

png_debugl(2, "foo=%d", foo);

is expanded to

if (PNG_DEBUG > 2)
fprintf(PNG_DEBUG_FILE, "foo=%d\n", foo);

When PNG_DEBUG is defined but is zero, the macros aren’'t defined, but you can still use
PNG_DEBUG to control your own debugging:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

#ifdef PNG_DEBUG
fprintf(stderr, ...
#endif

When PNG_DEBUG = 1, the macros are defined, but only png_debug statements having level = 0 will
be printed. There aren’t any such statements in this version of libpng, but if you insert some they will
be printed.

VII. MNG support
The MNG specification (available at http://www.libpng.org/pub/mng) allows certain extensions to
PNG for PNG images that are embedded in MNG datastreams. Libpng can support some of these
extensions. To enable them, use the png_permit_mng_features() function:

feature_set = png_permit_mng_features(png_ptr, mask)

mask is apng_uint_32 containing the bitwise OR of the
features you want to enable. Theseinclude
PNG_FLAG_MNG_EMPTY_PLTE
PNG_FLAG_MNG_FILTER 64
PNG_ALL_MNG_FEATURES

feature_set isapng_uint_32 that is the bitwise AND of
your mask with the set of MNG featuresthat is
supported by the version of libpng that you are using.

It isan error to use this function when reading or writing a standalone PNG file with the PNG 8-byte
signature. The PNG datastream must be wrapped in a MNG datastream. Asaminimum, it must have
the MNG 8-byte signature and the MHDR and MEND chunks. Libpng does not provide support for
these or any other MNG chunks; your application must provide its own support for them. Y ou may
wish to consider using libmng (available at https://www.libmng.conV) instead.

VIII. Changesto Libpng from version 0.88
It should be noted that versions of libpng later than 0.96 are not distributed by the original libpng
author, Guy Schalnat, nor by Andreas Dilger, who had taken over from Guy during 1996 and 1997, and
distributed versions 0.89 through 0.96, but rather by another member of the original PNG Group, Glenn
Randers-Pehrson. Guy and Andreas are still alive and well, but they have moved on to other things.

The old libpng functions png_read _init(), png_write_init(), png_info_init(), png_read_destroy(), and

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_write_destroy() have been moved to PNG_INTERNAL in version 0.95 to discourage their use.
These functions will be removed from libpng version 1.4.0.

The preferred method of creating and initializing the libpng structuresis viathe

png_create read_struct(), png_create write_struct(), and png_create_info_struct() because they isolate
the size of the structures from the application, allow version error checking, and also alow the use of
custom error handling routines during the initialization, which the old functions do not. The functions
png_read destroy() and png_write_destroy() do not actually free the memory that libpng allocated for
these structs, but just reset the data structures, so they can be used instead of png_destroy read struct()
and png_destroy_write _struct() if you feel there istoo much system overhead allocating and freeing the
png_struct for each image read.

Setting the error callbacks via png_set_message fn() before png_read_init() as was suggested in
libpng-0.88 is no longer supported because this caused applications that do not use custom error
functionsto fail if the png_ptr was not initialized to zero. Itisstill possible to set the error callbacks
AFTER png_read_init(), or to change them with png_set_error_fn(), which is essentially the same
function, but with a new name to force compilation errors with applications that try to use the old
method.

Support for the SCAL, iCCP, iTXt, and sPLT chunks was added at libpng-1.0.6; however, iTXt support
was not enabled by default.

Starting with version 1.0.7, you can find out which version of the library you are using at run-time:
png_uint_32 libpng_vn = png_access_version_number();

The number libpng_vn is constructed from the major version, minor version with leading zero, and
release number with leading zero, (e.g., libpng_vn for version 1.0.7 is 10007).

Note that this function does not take a png_ptr, so you can call it before you’ ve created one.
Y ou can aso check which version of png.h you used when compiling your application:
png_uint_32 application vn=PNG_LIBPNG_VER;
I X. Changesto Libpng from version 1.0.x to 1.2.x
Support for user memory management was enabled by default. To accomplish this, the functions

png_create read struct_2(), png_create write_struct_2(), png_set_mem_fn(), png_get_mem_ptr(),
png_malloc_default(), and png_free default() were added.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Support for the iTXt chunk has been enabled by default as of version 1.2.41.
Support for certain MNG features was enabled.

Support for numbered error messages was added. However, we never got around to actually
numbering the error messages. The function png_set_strip_error_numbers() was added (Note: the
prototype for this function was inadvertently removed from png.hin PNG_NO_ASSEMBLER_CODE
builds of libpng-1.2.15. It wasrestored in libpng-1.2.36).

The png_malloc_warn() function was added at libpng-1.2.3. Thisissues apng_warning and returns
NULL instead of aborting when it fails to acquire the requested memory allocation.

Support for setting user limits on image width and height was enabled by default. The functions
png_set_user_limits(), png_get user_width_max(), and png_get_user_height_max() were added at
libpng-1.2.6.

The png_set_add apha() function was added at libpng-1.2.7.

A number of macro definitions in support of runtime selection of assembler code features (especially
Intel MM X code support) were added at libpng-1.2.0:

PNG_ASM_FLAG_MMX_SUPPORT_COMPILED
PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW
PNG_ASM_FLAG_MMX_READ_INTERLACE
PNG_ASM_FLAG_MMX_READ_FILTER_SUB
PNG_ASM_FLAG_MMX_READ_FILTER UP
PNG_ASM_FLAG _MMX_READ_FILTER AVG
PNG ASM_FLAG _MMX_READ FILTER PAETH
PNG_ASM_FLAGS INITIALIZED
PNG_MMX_READ FLAGS

PNG_MMX_FLAGS

PNG_MMX_WRITE_FLAGS

PNG_MMX_FLAGS

We added the following functions in support of runtime selection of assembler code features:

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_get_mmx_flagmask()

png_set mmx_thresholds()
png_get_asm_flags()

png_get mmx_bitdepth_threshold()
png_get_mmx_rowbytes threshold()
png_set_asm flags()

We replaced all of these functions with simple stubsin libpng-1.2.20, when the Intel assembler code
was removed due to alicensing issue.

These macros are deprecated:

PNG_READ_TRANSFORMS NOT_SUPPORTED
PNG_PROGRESSIVE_READ _NOT_SUPPORTED
PNG_NO_SEQUENTIAL_READ_SUPPORTED
PNG_WRITE_TRANSFORMS NOT_SUPPORTED
PNG_READ_ANCILLARY_CHUNKS NOT_SUPPORTED
PNG_WRITE_ANCILLARY_CHUNKS _NOT_SUPPORTED

They have been replaced, respectively, by:

PNG_NO_READ_TRANSFORMS
PNG_NO_PROGRESSIVE_READ
PNG_NO_SEQUENTIAL_READ
PNG_NO_WRITE_TRANSFORMS
PNG_NO_READ_ANCILLARY_CHUNKS
PNG_NO_WRITE_ANCILLARY_CHUNKS

PNG_MAX_UINT was replaced with PNG_UINT_31 MAX. It has been deprecated since
libpng-1.0.16 and libpng-1.2.6.

The function
png_check_sig(sig, num) was replaced with
Ipng_sig_cmp(sig, 0, num) It has been deprecated since libpng-0.90.

The function

1.2.9.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

X. Changesto Libpng from version 1.0.x/1.2.x to 1.4.x
Private libpng prototypes and macro definitions were moved from png.h and pngconf.h into a new
pngpriv.h header file.
Functions png_set_benign_errors(), png_benign_error(), and png_chunk_benign_error() were added.
Support for setting the maximum amount of memory that the application will allocate for reading
chunks was added, as a security measure. The functions png_set_chunk_cache _max() and

png_get_chunk_cache max() were added to the library.

We implemented support for |/O states by adding png_ptr member io_state and functions
png_get io_chunk_name() and png_get io_state() in pngget.c

We added PNG_TRANSFORM_GRAY_TO_RGB to the available high-level input transforms.
Checking for and reporting of errorsin the IHDR chunk is more thorough.
Support for global arrays was removed, to improve thread safety.
Some obsol ete/deprecated macros and functions have been removed.
Typecasted NULL definitions such as
#define png_voidp_NULL (png_voidp)NULL were eliminated. If you used these in your

application, just use NULL instead.

The png_struct and info_struct members "trans' and "trans_values' were changed to "trans_alpha’ and
"trans_color", respectively.

The obsolete, unused pnggccrd.c and pngvcerd.c files and related makefiles were removed.
ThePNG 1 0 X and PNG_1 2 X macros were eliminated.

The PNG_LEGACY_SUPPORTED macro was eliminated.

Many WIN32_WCE #ifdefs were removed.

The functions png_read_init(info_ptr), png_write init(info_ptr), png_info_init(info_ptr),

png_read_destroy(), and png_write_destroy() have been removed. They have been deprecated since
libpng-0.95.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

The png_permit_empty_plte() was removed. It has been deprecated since libpng-1.0.9. Use
png_permit_mng_features() instead.

We removed the obsolete stub functions png_get_ mmx_flagmask(), png_set_ mmx_thresholds(),
png_get_asm flags(), png_get_ mmx_bitdepth_threshold(), png_get_ mmx_rowbytes_threshold(),
png_set_asm_flags(), and png_mmx_supported()

We removed the obsolete png_check_sig(), png_memcpy_check(), and png_memset_check()
functions. Instead use !png_sig_cmp(), memcpy(), and memset(), respectively.

expanded any tRNS chunk to an alpha channel.

Macros for png_get_uint_16, png_get_uint_32, and png_get_int_32 were added and are used by
default instead of the corresponding functions. Unfortunately, from libpng-1.4.0 until 1.4.4, the
png_get _uint_16 macro (but not the function) incorrectly returned a value of type png_uint_32.

We changed the prototype for png_malloc() from
png_malloc(png_structp png_ptr, png_uint_32 size) to
png_malloc(png_structp png_ptr, png_alloc_size t size)

This also applies to the prototype for the user replacement malloc_fn().

The png_calloc() function was added and is used in place of of "png_malloc(); memset();" except in the
casein png_read png() where the array consists of pointers; in this case a"for" loop is used after the
png_malloc() to set the pointersto NULL, to give robust. behavior in case the application runs out of
memory part-way through the process.

We changed the prototypes of png_get_compression_buffer_size() and
png_set_compression_buffer_size() to work with size_t instead of png_uint_32.

Support for numbered error messages was removed by default, since we never got around to actualy
numbering the error messages. The function png_set_strip_error_numbers() was removed from the
library by default.

The png_zalloc() and png_zfree() functions are no longer exported. The png_zalloc() function no

longer zeroes out the memory that it allocates. Applications that called png_zalloc(png_ptr, number,
size) can call png_calloc(png_ptr, number*size) instead, and can call png_free() instead of png_zfree().

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Support for dithering was disabled by default in libpng-1.4.0, because it has not been well tested and
doesn't actually "dither". The code was not removed, however, and could be enabled by building
libpng with PNG_READ_DITHER_SUPPORTED defined. In libpng-1.4.2, this support was re-
enabled, but the function was renamed png_set_quantize() to reflect more accurately what it actually
does. At the sametime, the PNG_DITHER [RED,GREEN_BLUE]_BITS macros were also renamed
to PNG_QUANTIZE_[RED,GREEN,BLUE]_BITS, and PNG_READ_DITHER_SUPPORTED was
renamed to PNG_READ_QUANTIZE_SUPPORTED.

We removed the trailing ’.” from the warning and error messages.

XI. Changesto Libpng from version 1.4.x to 1.5.x
From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the function) incorrectly returned a
value of type png_uint_32. Theincorrect macro was removed from libpng-1.4.5.

Checking for invalid palette index on write was added at libpng 1.5.10. If apixel contains an invalid
(out-of-range) index libpng issues a benign error. Thisis enabled by default because this condition is
an error according to the PNG specification, Clause 11.3.2, but the error can be ignored in each png_ptr
with

png_set_check for_invalid_index(png_ptr, allowed);

allowed - one of
0: disable benign error (accept the
invalid data without warning).
1: enable benign error (treat the
invalid data as an error or a
warning).

If the error isignored, or if png_benign_error() treatsit asawarning, any invalid pixels are decoded as
opaque black by the decoder and written as-is by the encoder.

Retrieving the maximum palette index found was added at libpng-1.5.15. This statement must appear
after png_read_png() or png_read image() while reading, and after png_write_png() or
png_write_image() while writing.

int max_palette = png_get_palette max(png_ptr, info_ptr);

Thiswill return the maximum palette index found in the image, or "-1" if the palette was not checked,
or "0" if no palette was found. Note that this does not account for any palette index used by ancillary

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

chunks such as the bK GD chunk; you must check those separately to determine the maximum pal ette
index actually used.

There are no substantial APl changes between the non-deprecated parts of the 1.4.5 APl and the 1.5.0
API; however, the ability to directly access members of the main libpng control structures, png_struct
and png_info, deprecated in earlier versions of libpng, has been completely removed from libpng 1.5,
and new private "pngstruct.h", "pnginfo.h", and "pngdebug.h" header files were created.

We no longer include zlib.h in png.h. The include statement has been moved to pngstruct.h, whereit is
not accessible by applications. Applications that need access to information in zlib.h will need to add
the "#include "zlib.h"" directive. It does not matter whether thisis placed prior to or after the
""#include png.h"’ directive.

The png_sprintf(), png_strcpy(), and png_strncpy() macros are no longer used and were removed.

We moved the png_strien(), png_memcpy(), png_memset(), and png_memcmp() macros into a private
header file (pngpriv.h) that is not accessible to applications.

In png_get iCCP, the type of "profile" was changed from png_charpp to png_bytepp, and in
png_set iCCP, from png_charp to png_const_bytep.

There are changes of form in png.h, including new and changed macros to declare parts of the API.
Some API functions with arguments that are pointers to data not modified within the function have
been corrected to declare these arguments with const.

Much of the internal use of C macros to control the library build has also changed and some of thisis
visible in the exported header files, in particular the use of macros to control data and APl elements
visible during application compilation may require significant revision to application code. (Itis
extremely rare for an application to do this.)

Any program that compiled against libpng 1.4 and did not use deprecated features or access internal
library structures should compile and work against libpng 1.5, except for the change in the prototype
for png_get_iCCP() and png_set iCCP() API functions mentioned above.

libpng 1.5.0 adds PNG_ PASS macrosto help in the reading and writing of interlaced images. The
macros return the number of rows and columnsin each pass and information that can be used to de-

interlace and (if absolutely necessary) interlace an image.

libpng 1.5.0 adds an API png_longjmp(png_ptr, value). This API calls the application-provided
png_longjmp_ptr on the internal, but application initialized, longjmp buffer. It isprovided asa

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

convenience to avoid the need to use the png_jmpbuf macro, which had the unnecessary side effect of
resetting the internal png_longjmp_ptr value.

libpng 1.5.0 includes a complete fixed point API. By default thisis present along with the
corresponding floating point API. 1n general the fixed point API isfaster and smaller than the floating
point one because the PNG file format used fixed point, not floating point. This applies evenif the
library uses floating point in internal calculations. A new macro,
PNG_FLOATING_ARITHMETIC_SUPPORTED, revea s whether the library uses floating point
arithmetic (the default) or fixed point arithmetic internally for performance critical calculations such as
gamma correction. In some cases, the gamma cal culations may produce sightly different results. This
has changed the resultsin png_rgb to_gray and in apha composition (png_set_background for
example). This applies even if the original image was already linear (gamma == 1.0) and, therefore, it
is not necessary to linearize theimage. Thisis because libpng has * not* been changed to optimize that
case correctly, yet.

Fixed point support for the SCAL chunk comes with an important caveat; the SCAL specification uses a
decimal encoding of floating point values and the accuracy of PNG fixed point valuesis insufficient for
representation of these values. Consequently a"string” API (pnhg_get sCAL_sand png_set sCAL_s) is
the only reliable way of reading arbitrary sCAL chunks in the absence of either the floating point API
or interna floating point calculations. Starting with libpng-1.5.0, both of these functions are present
when PNG_sCAL_SUPPORTED isdefined. Prior to libpng-1.5.0, their presence aso depended upon
PNG_FIXED_POINT_SUPPORTED being defined and PNG_FLOATING_POINT_SUPPORTED not
being defined.

Applications no longer need to include the optional distribution header file pngusr.h or define the
corresponding macros during application build in order to see the correct variant of the libpng API.
From 1.5.0 application code can check for the corresponding SUPPORTED macro:

#ifdef PNG_INCH_CONVERSIONS SUPPORTED
/* code that uses the inch conversion APIs. */ #endif

This macro will only be defined if the inch conversion functions have been compiled into libpng. The
full set of macros, and whether or not support has been compiled in, are available in the header file
pnglibconf.h. This header file is specific to the libpng build. Notice that prior to 1.5.0 the
_SUPPORTED macros would always have the default definition unless reset by pngusr.h or by explicit
settings on the compiler command line. These settings may produce compiler warnings or errorsin
1.5.0 because of macro redefinition.

Applications can now choose whether to use these macros or to call the corresponding function by
defining PNG_USE_READ_MACROS or PNG_NO_USE READ_MACROS before including png.h.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Notice that thisis only supported from 1.5.0; defining PNG_NO_USE READ_ MACROS prior to
1.5.0will lead to alink failure.

Prior to libpng-1.5.4, the zlib compressor used the same set of parameters when compressing the IDAT
data and textual data such as zZTXt and iCCP. In libpng-1.5.4 we reinitialized the zlib stream for each
type of data. We added five png_set_text *() functions for setting the parameters to use with textual
data.

Prior to libpng-1.5.4, the PNG_READ_16 TO 8 ACCURATE_SCALE_SUPPORTED option was off
by default, and slightly inaccurate scaling occurred. This option can no longer be turned off, and the
choice of accurate or inaccurate 16-t0-8 scaling is by using the new png_set_scale 16 to 8() API for
accurate scaling or the old png_set_strip 16 to 8() API for simple chopping. In libpng-1.5.4, the
PNG_READ_16 TO 8 ACCURATE_SCALE_SUPPORTED macro became
PNG_READ_SCALE_16 TO 8 SUPPORTED, and the PNG_READ_16 TO_8 macro became
PNG_READ_STRIP_16 TO_8 SUPPORTED, to enable thetwo png_set * 16 to_8() functions

Separately.

Prior to libpng-1.5.4, the png_set_user_limits() function could only be used to reduce the width and
height limits from the value of PNG_USER_WIDTH_MAX and PNG_USER_HEIGHT_MAX,
although this document said that it could be used to override them. Now this function will reduce or
increase the limits.

Starting in libpng-1.5.22, default user limits were established. These can be overridden by application
callsto png_set_user_limits(), png_set user_chunk_cache _max(), and/or png_set_user_malloc_max().
The limits are now
max possible default

png_user_width _max Ox7fffffff 1,000,000

png user_height max Ox7fffffff 1,000,000

png_user_chunk_cache max O (unlimited) 1000

png_user_chunk_malloc_max 0 (unlimited) 8,000,000

The png_set_option() function (and the "options’ member of the png struct) was added to
libpng-1.5.15, with option PNG_ARM_NEON.

The library now supports a complete fixed point implementation and can thus be used on systems that
have no floating point support or very limited or slow support. Previously gamma correction, an

essential part of complete PNG support, required reasonably fast floating point.

As part of this the choice of internal implementation has been made independent of the choice of fixed
versus floating point APIs and al the missing fixed point APIs have been implemented.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

The exact mechanism used to control attributes of API functions has changed, as described in the
INSTALL file.

A new test program, pngvalid, is provided in addition to pngtest. pngvalid validates the arithmetic
accuracy of the gamma correction calculations and includes a number of validations of the file format.
A subset of the full range of tests is run when "make check” is done (in the ’ configure’ build.)
pngvalid also allows total allocated memory usage to be evaluated and performs additional memory
overwrite validation.

Many changes to individual feature macros have been made. The following are the changes most likely
to be naticed by library builders who configure libpng:

1) All feature macros now have consistent naming:

#define PNG_NO _feature turns the feature off #define PNG_feature SUPPORTED turns the feature
on

pnglibconf.h contains one line for each feature macro which is either:

#define PNG_feature SUPPORTED

if the feature is supported or:

[*#undef PNG_feature SUPPORTED*/

if itisnot. Library code consistently checksfor the’ SUPPORTED’ macro. It does not, and libpng
applications should not, check for the’ NO' macro which will not normally be defined even if the
feature is not supported. The’NO' macros are only used internally for setting or not setting the
corresponding ’ SUPPORTED’ macros.

Compatibility with the old namesis provided as follows:

PNG_INCH_CONVERSIONS turnson PNG_INCH_CONVERSIONS_SUPPORTED

And the following definitions disable the corresponding feature:
PNG_SETIJMP_NOT_SUPPORTED disables SETIMP

PNG_READ_TRANSFORMS NOT_SUPPORTED disables READ_TRANSFORMS

PNG_NO_READ_COMPOSITED_NODIV disables READ_COMPOSITE_NODIV
PNG_WRITE_TRANSFORMS NOT_SUPPORTED disablesWRITE_TRANSFORMS

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

PNG_READ_ANCILLARY_CHUNKS NOT_SUPPORTED disables
READ_ANCILLARY_CHUNKSPNG_WRITE_ANCILLARY_CHUNKS NOT_SUPPORTED
disables WRITE_ANCILLARY_CHUNKS

Library builders should remove use of the above, inconsistent, names.

2) Warning and error message formatting was previously conditional on the STDIO feature. The library
has been changed to use the CONSOLE _|0O feature instead. This meansthat if CONSOLE IO is
disabled the library no longer uses the printf(3) functions, even though the default read/write
implementations use (FILE) style stdio.h functions.

3) Three feature macros now control the fixed/floating point decisions:
PNG_FLOATING_POINT_SUPPORTED enables the floating point APIs

PNG_FIXED_POINT_SUPPORTED enables the fixed point APIs; however, in practice these are
normally required internally anyway (because the PNG file format isfixed point), therefore in most
cases PNG_NO_FIXED_POINT merely stops the function from being exported.

PNG_FLOATING_ARITHMETIC _SUPPORTED chooses between the interna floating point
implementation or the fixed point one. Typically the fixed point implementation is larger and slower
than the floating point implementation on a system that supports floating point; however, it may be
faster on a system which lacks floating point hardware and therefore uses a software emulation.

4) Added PNG_{READ,WRITE} INT_FUNCTIONS SUPPORTED. Thisallows the functionsto
read and write ints to be disabled independently of PNG_USE READ_MACROS, which allows libpng
to be built with the functions even though the default is to use the macros - this allows applications to
choose at app buildtime whether or not to use macros (previously impossi ble because the functions
weren't in the default build.)

XI1. Changesto Libpng from version 1.5.x to 1.6.x
A "simplified API" has been added (see documentation in png.h and a simple example in
contrib/examples/pngtopng.c). The new publicly visible API includes the following:

macros:
PNG_FORMAT_*
PNG_IMAGE_*

structures:
png_control

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_image

read functions
png_image begin_read from_file()
png_image begin_read from stdio()
png_image_begin_read from_memory()
png_image finish_read()
png_image_free()

write functions
png_image write to filg()
png_image write to_memory()
png_image write to_stdio()

Starting with libpng-1.6.0, you can configure libpng to prefix all exported symbols, using the
PNG_PREFIX macro.

We no longer include string.h in png.h. The include statement has been moved to pngpriv.h, whereitis
not accessible by applications. Applications that need access to information in string.h must add an
"#include <string.h>" directive. It does not matter whether thisis placed prior to or after the ' #include
"png.h™ directive.

Thefollowing APl are now DEPRECATED:
png_info_init_3()
png_convert_to_rfc1123() which has been replaced
with png_convert_to rfc1123 buffer()
png_malloc_default()
png_free default()
png_reset_zstream()

The following have been removed:

png_get_io_chunk_name(), which has been replaced
with png_get_io_chunk_type(). The new
function returns a 32-bit integer instead of
astring.

The png_sizeof(), png_strlen(), png_memcpy(), png_memcmp(), and
png_memset() macros are no longer used in the libpng sources and
have been removed. These had already been made invisible to applications
(i.e., defined in the private pngpriv.h header file) since libpng-1.5.0.

The signatures of many exported functions were changed, such that
png_structp became png_structrp or png_const_structrp

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_infop became png_inforp or png_const_inforp where "rp" indicates a "restricted pointer"”.

Dropped support for 16-bit platforms. The support for FAR/far types has been eliminated and the
definition of png_alloc_size tisnow controlled by aflag so that 'small size t' systems can select it if
necessary.

Error detection in some chunks has improved; in particular the iCCP chunk reader now does pretty
complete validation of the basic format. Some bad profiles that were previously accepted are now
accepted with awarning or rejected, depending upon the png_set_benign_errors() setting, in particular
the very old broken Microsoft/HP 3144-byte SRGB profile. Starting with libpng-1.6.11, recognizing
and checking sRGB profiles can be avoided by means of

#if defined(PNG_SKIP_sRGB_CHECK_PROFILE) &&
defined(PNG_SET_OPTION_SUPPORTED)
png_set_option(png_ptr, PNG_SKIP_sRGB_CHECK_PROFILE,
PNG_OPTION_ON);
#endif

It's not agood ideato do thisif you are using the "simplified API", which needs to be able to recognize
SRGB profiles conveyed viathe iCCP chunk.

The PNG spec requirement that only grayscale profiles may appear in images with color type O or 4
and that even if the image only contains gray pixels, only RGB profiles may appear in images with
color type 2, 3, or 6, isnow enforced. The SRGB chunk is allowed to appear in images with any color
type and isinterpreted by libpng to convey a one-tracer-curve gray profile or athree-tracer-curve RGB
profile as appropriate.

Libpng 1.5.x erroneously used /MD for Debug DLL builds; if you used the debug builds in your app
and you changed your app to use /MD you will need to change it back to /MDd for libpng 1.6.x.

Prior to libpng-1.6.0 awarning would be issued if the iTXt chunk contained an empty language field or
an empty translated keyword. Both of these are allowed by the PNG specification, so these warnings
are no longer issued.

The library now issues an error if the application attempts to set atransform after it calls
png_read update info() or if it attemptsto call both png_read update info() and

png_start_read image() or to call either of them more than once.

The default condition for benign_errorsis now to treat benign errors as warnings while reading and as
errors while writing.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

The library now issues awarning if both background processing and RGB to gray are used when
gamma correction happens. As with previous versions of the library the results are numerically very
incorrect in this case.

There are some minor arithmetic changes in some transforms such as png_set_background(), that might
be detected by certain regression tests.

Unknown chunk handling has been improved internally, without any API change. This adds more
correct option control of the unknown handling, corrects a pre-existing bug where the per-chunk ' keep’
setting isignored, and makesit possible to skip IDAT chunksin the sequentia reader.

The machine-generated configure files are no longer included in branches libpngl6 and later of the GIT
repository. They continue to be included in the tarball releases, however.

Libpng-1.6.0 through 1.6.2 used the CMF bytes at the beginning of the IDAT stream to set the size of
the sliding window for reading instead of using the default 32-kbyte sliding window size. It was
discovered that there are hundreds of PNG filesin the wild that have incorrect CMF bytes that caused
Zlib to issue the "invalid distance too far back" error and reject thefile. Libpng-1.6.3 and later
calculate their own safe CMF from the image dimensions, provide away to revert to the libpng-1.5.x
behavior (ignoring the CMF bytes and using a 32-kbyte dliding window), by using

png_set_option(png_ptr, PNG_MAXIMUM_INFLATE_WINDOW,
PNG_OPTION_ON);

and provide atool (contrib/tools/pngfix) for rewriting a PNG file while optimizing the CMF bytesin its
IDAT chunk correctly.

Libpng-1.6.0 and libpng-1.6.1 wrote uncompressed i TXt chunks with the wrong length, which resulted
in PNG files that cannot be read beyond the bad iTXt chunk. Thiserror was fixed in libpng-1.6.3, and
atool (called contrib/tools/png-fix-itxt) has been added to the libpng distribution.

Starting with libpng-1.6.17, the PNG_SAFE_LIMITS macro was eliminated and safe limits are used by
default (users who need larger limits can still override them at compile time or run time, as described
above).

The new limits are
default spec limit
png_user_width_max 1,000,000 2,147,483,647
png_user_height_max 1,000,000 2,147,483,647
png_user_chunk_cache max 128 unlimited

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

png_user_chunk_malloc_max 8,000,000 unlimited

Starting with libpng-1.6.18, aPNG_RELEASE BUILD macro was added, which alowslibrary
buildersto control compilation for an installed system (arelease build). It can be set for testing debug
or beta builds to ensure that they will compile when the build typeis switched to RC or STABLE. In
essence thisoverridesthe PNG_LIBPNG_BUILD_BASE_TY PE definition which is not directly user
controllable.

Starting with libpng-1.6.19, attempting to set an over-length PLTE chunk is an error. Previously this
requirement of the PNG specification was not enforced, and the palette was always limited to 256
entries. An over-length PLTE chunk found in an input PNG is silently truncated.

Starting with libpng-1.6.31, the eXIf chunk is supported. Libpng does not attempt to decode the Exif
profile; it simply returns a byte array containing the profile to the calling application which must do its
own decoding.

XI11. Detecting libpng
The png_get io ptr() function has been present since libpng-0.88, has never changed, and is unaffected
by conditional compilation macros. It isthe best choice for use in configure scripts for detecting the
presence of any libpng version since 0.88. In an autoconf "configure.in” you could use

AC_CHECK_LIB(png, png_get_io_ptr, ...
XV. Sour ce code repository
Since about February 2009, version 1.2.34, libpng has been under "git" source control. The git
repository was built from old libpng-x.y.z.tar.gz files going back to version 0.70. Y ou can access the

git repository (read only) at

https://github.com/glennrp/libpng or
https://git.code.sf.net/p/libpng/code.git

or you can browse it with aweb browser at

https.//github.com/glennrp/libpng or
https:.//sourceforge.net/p/libpng/code/ci/libpngl6/tree/

Patches can be sent to png-mng-implement at lists.sourceforge.net or uploaded to the libpng bug
tracker at

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

https.//libpng.sourceforge.io/
or asa"pull request” to
https://github.com/glennrp/libpng/pulls

We also accept patches built from the tar or zip distributions, and simple verbal descriptions of bug
fixes, reported either to the SourceForge bug tracker, to the png-mng-implement at lists.sf.net mailing
list, as github issues.

XV. Coding style
Our coding styleis similar to the "Allman" style (See
https.//en.wikipedia.org/wiki/Indent_style#Allman_style), with curly braces on separate lines:

if (condition)

{

action;

}

elseif (another condition)

{

another action;

}

The braces can be omitted from simple one-line actions:

if (condition)
return O;

We use 3-space indentation, except for continued statements which are usually indented the same as
thefirst line of the statement plus four more spaces.

For macro definitions we use 2-space indentation, always leaving the "#" in the first column.

#fndef PNG_NO_FEATURE

ifndef PNG_FEATURE_SUPPORTED
definePNG_FEATURE_SUPPORTED
endif

#endif

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

Comments appear with the leading "/*" at the same indentation as the statement that follows the
comment:

[* Single-line comment */
statement;

[* Thisisamultiple-line
* comment.

*/

statement;

Very short comments can be placed after the end of the statement to which they pertain:

statement; /* comment */

We don't use C++ style ("/I") comments. We have, however, used them in the past in some now-
abandoned MM X assembler code.

Functions and their curly braces are not indented, and exported functions are marked with PNGAPI:

[* Thisisapublic function that isvisible to

* application programmers. It does thus-and-so.
*/

void PNGAPI

png_exported function(png_ptr, png_info, foo)
{
body;

}

The return type and decorations are placed on a separate line ahead of the function name, asillustrated
above.

The prototypes for al exported functions appear in png.h, above the comment that says
/* Maintainer: Put new public prototypes here ... */
We mark all non-exported functions with "/* PRIVATE */"":

void /* PRIVATE */
png_non_exported_function(png_ptr, png_info, foo)

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

{
body;

}

The prototypes for non-exported functions (except for those in pngtest) appear in pngpriv.h above the
comment that says

/* Maintainer: Put new private prototypes here ™ */

To avoid polluting the global namespace, the names of all exported functions and variables begin with
"png_", and all publicly visible C preprocessor macros begin with "PNG". We request that applications
that use libpng *not* begin any of their own symbols with either of these strings.

We put a space after the "sizeof" operator and we omit the optional parentheses around its argument
when the argument is an expression, not a type name, and we always enclose the sizeof operator, with
its argument, in parentheses:

(sizeof (png_uint_32))
(sizeof array)

Prior to libpng-1.6.0 we used a " png_sizeof()" macro, formatted as though it were a function.

Control keywordsif, for, while, and switch are always followed by a space to distinguish them from
function calls, which have no trailing space.

We put a space after each comma and after each semicolon in "for" statements, and we put spaces
before and after each C binary operator and after "for" or "whil€", and before "?'. We don’t put a
space between atypecast and the expression being cast, nor do we put one between a function name
and the left parenthesis that followsiit:

for (i=2;i>0; i)
ylil =a(x) + (int)b;

We prefer #ifdef and #ifndef to #if defined() and #if !defined() when there is only one macro being
tested. We aways use parentheses with "defined".

We express integer constants that are used as bit masks in hex format, with an even number of lower-

case hex digits, and to make them unsigned (e.g., 0xO0U, OxffU, 0x0100U) and long if they are greater
than Ox7fff (e.g., OXffffUL).

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

We prefer to use underscores rather than camel Case in names, except for afew type names that we
inherit from zlib.h.

We prefer "if (something != 0)" and "if (something == 0)" over "if (something)" and if "(!something)",
respectively, and for pointers we prefer "if (some_pointer I= NULL)" or "if (some_pointer == NULL)".

We do not use the TAB character for indentation in the C sources.
Lines do not exceed 80 characters.

Other rules can be inferred by inspecting the libpng source.

NOTE
Note about libpng version numbers:

Due to various miscommunications, unforeseen code incompatibilities and occasional factors outside
the authors' control, version numbering on the library has not always been consistent and
straightforward. The following table summarizes matters since version 0.89c, which was the first
widely used release:

source png.h png.h shared-lib

version string int version

0.89c"1.0beta3" 0.89 89 1.0.89

0.90 "1.0beta4” 0.90 90 0.90 [should have been 2.0.90]
0.95 "1.0beta5" 0.95 95 0.95 [should have been 2.0.95]
0.96 "1.0beta6” 0.96 96 0.96 [should have been 2.0.96]
0.97b "1.00.97 beta 7" 1.00.97 97 1.0.1 [should have been 2.0.97]

0.97¢ 097 97 2.0.97
0.98 098 98 2.0.98

0.99 0.99 98 2.0.99

0.99a-m 0.99 99 2.0.99

1.00 1.00 100 2.1.0[100 should be 10000]

1.0.0 (from hereon, the 100 2.1.0[100 should be 10000]

101 png.hstringis 10001 2.1.0

1.0.1ae identical to the 10002 from here on, the shared library
1.0.2 sourceversion) 10002 is2.V whereV isthe source code
1.0.2a-b 10003 version, except as noted.

1.0.3 10003

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

1.0.3ad 10004

1.04 10004

1.0.4af 10005

1.0.5 (+ 2 patches) 10005

1.0.5a-d 10006

1.0.5er 10100 (not source compatible)

1.0.5sv 10006 (not binary compatible)

1.0.6 (+ 3 patches) 10006 (still binary incompatible)
1.0.6d-f 10007 (still binary incompatible)

1.0.69 10007

1.0.6h 10007 10.6h (testing xy.z so-numbering)
1.0.6i 10007 10.6i

1.0.6j 10007 2.1.0.6j (incompatible with 1.0.0)
1.0.7betall-14 DLLNUM 10007 2.1.0.7betall-14 (binary compatible)
1.0.7betal5-18 1 10007 2.1.0.7betal5-18 (binary compatible)
1.0.7rc1-2 1 10007 2.1.0.7rc1-2 (binary compatible)
1.0.7 1 10007 (still compatible)

1.0.69 10 10069 10.s0.0.69[.0]

1.2.59 13 10259 12.50.0.59[.0]

1.4.20 14 10420 14.50.0.20[.0]

1.5.30 15 10530 15.s50.15.30[.0]

1.6.35 16 10635 16.50.16.35[.0]

Henceforth the source version will match the shared-library minor and patch numbers; the shared-
library major version number will be used for changes in backward compatibility, asit isintended. The
PNG_PNGLIB_VER macro, which is not used within libpng but is available for applications, isan
unsigned integer of the form XYY ZZ corresponding to the source version X.Y.Z (leading zerosin Y
and Z). Betaversionswere given the previous public release number plus aletter, until version 1.0.6j;
from then on they were given the upcoming public release number plus "betaNN" or "rcNN".

SEE ALSO

png(5)

The PNG (Portable Network Graphics) format specification.

June 21, 2023 LIBPNG(3)

LIBPNG(3) FreeBSD Library Functions Manual LIBPNG(3)

libpng
http://www.libpng.org/pub/png/libpng.html (canonical home page)
https.//github.com/pnggroup/libpng (canonical Git repository)
https://libpng.sourceforge.io (downloadabl e archives)

zlib

https://zlib.net (canonical home page)
https://github.com/madler/zlib (canonical Git repository)
A copy of zlib may also be found at the same location as libpng.

In the case of any inconsistency between the PNG specification and thislibrary, the specification takes
precedence.
AUTHORS

This man page: Initialy created by Glenn Randers-Pehrson. Maintained by Cosmin Truta.

The contributing authors would like to thank all those who helped with testing, bug fixes, and patience.
Thiswouldn’t have been possible without al of you.

Thanksto Frank J. T. Wojcik for helping with the documentation.

Libpng: Initialy created in 1995 by Guy Eric Schalnat, then of Group 42, Inc. Maintained by Cosmin
Truta

Supported by the PNG devel opment group.

png-mng-implement at lists.sourceforge.net. (Subscription is required; visit
https://lists.sourceforge.net/listg/listinfo/png-mng-implement to subscribe.)

June 21, 2023 LIBPNG(3)

