
NAME
libsa - support library for standalone executables

SYNOPSIS
#include <stand.h>

DESCRIPTION
The libsa library provides a set of supporting functions for standalone applications, mimicking where

possible the standard BSD programming environment. The following sections group these functions by

kind. Unless specifically described here, see the corresponding section 3 manpages for the given

functions.

STRING FUNCTIONS
String functions are available as documented in string(3) and bstring(3).

MEMORY ALLOCATION
void * malloc(size_t size)

Allocate size bytes of memory from the heap using a best-fit algorithm.

void free(void *ptr)

Free the allocated object at ptr.

void setheap(void *start, void *limit)

Initialise the heap. This function must be called before calling alloc() for the first time.

The region between start and limit will be used for the heap; attempting to allocate beyond

this will result in a panic.

char * sbrk(int junk)

Provides the behaviour of sbrk(0), i.e., returns the highest point that the heap has reached.

This value can be used during testing to determine the actual heap usage. The junk

argument is ignored.

ENVIRONMENT
A set of functions are provided for manipulating a flat variable space similar to the traditional shell-

supported environment. Major enhancements are support for set/unset hook functions.

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

char * getenv(const char *name)

int setenv(const char *name, const char *value, int overwrite)

int putenv(char *string)

int unsetenv(const char *name)

These functions behave similarly to their standard library counterparts.

struct env_var * env_getenv(const char *name)

Looks up a variable in the environment and returns its entire data structure.

int env_setenv(const char *name, int flags, const void *value, ev_sethook_t sethook, ev_unsethook_t

unsethook)

Creates a new or sets an existing environment variable called name. If creating a new

variable, the sethook and unsethook arguments may be specified.

The set hook is invoked whenever an attempt is made to set the variable, unless the

EV_NOHOOK flag is set. Typically a set hook will validate the value argument, and then

call env_setenv() again with EV_NOHOOK set to actually save the value. The predefined

function env_noset() may be specified to refuse all attempts to set a variable.

The unset hook is invoked when an attempt is made to unset a variable. If it returns zero,

the variable will be unset. The predefined function env_nounset may be used to prevent a

variable being unset.

STANDARD LIBRARY SUPPORT
int abs(int i)

int getopt(int argc, char * const *argv, const char *optstring)

long strtol(const char *nptr, char **endptr, int base)

long long strtoll(const char *nptr, char **endptr, int base)

long strtoul(const char *nptr, char **endptr, int base)

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

long long strtoull(const char *nptr, char **endptr, int base)

void srandom(unsigned int seed)

long random(void)

char * strerror(int error)

Returns error messages for the subset of errno values supported by libsa.

assert(expression)

Requires <assert.h>.

int setjmp(jmp_buf env)

void longjmp(jmp_buf env, int val)

Defined as _setjmp() and _longjmp() respectively as there is no signal state to manipulate.

Requires <setjmp.h>.

CHARACTER I/O
void gets(char *buf)

Read characters from the console into buf. All of the standard cautions apply to this

function.

void ngets(char *buf, int size)

Read at most size - 1 characters from the console into buf. If size is less than 1, the

function’s behaviour is as for gets().

int fgetstr(char *buf, int size, int fd)

Read a line of at most size characters into buf. Line terminating characters are stripped,

and the buffer is always NUL terminated. Returns the number of characters in buf if

successful, or -1 if a read error occurs.

int printf(const char *fmt, ...)

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

void vprintf(const char *fmt, va_list ap)

int sprintf(char *buf, const char *fmt, ...)

void vsprintf(char *buf, const char *fmt, va_list ap)

The *printf functions implement a subset of the standard printf() family functionality and

some extensions. The following standard conversions are supported: c,d,n,o,p,s,u,x. The

following modifiers are supported: +,-,#,*,0,field width,precision,l.

The b conversion is provided to decode error registers. Its usage is:

printf("reg=%b\n", regval, "<base><arg>*");

where <base> is the output expressed as a control character, e.g. \10 gives octal, \20 gives

hex. Each <arg> is a sequence of characters, the first of which gives the bit number to be

inspected (origin 1) and the next characters (up to a character less than 32) give the text to

be displayed if the bit is set. Thus

printf("reg=%b\n", 3, "\10\2BITTWO\1BITONE");

would give the output

reg=3<BITTWO,BITONE>

The D conversion provides a hexdump facility, e.g.

printf("%6D", ptr, ":"); gives "XX:XX:XX:XX:XX:XX"

printf("%*D", len, ptr, " "); gives "XX XX XX ..."

CHARACTER TESTS AND CONVERSIONS
int isupper(int c)

int islower(int c)

int isspace(int c)

int isdigit(int c)

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

int isxdigit(int c)

int isascii(int c)

int isalpha(int c)

int isalnum(int c)

int iscntrl(int c)

int isgraph(int c)

int ispunct(int c)

int toupper(int c)

int tolower(int c)

FILE I/O
int open(const char *path, int flags)

Similar to the behaviour as specified in open(2), except that file creation is not supported,

so the mode parameter is not required. The flags argument may be one of O_RDONLY,

O_WRONLY and O_RDWR. Only UFS currently supports writing.

int close(int fd)

void closeall(void)

Close all open files.

ssize_t read(int fd, void *buf, size_t len)

ssize_t write(int fd, void *buf, size_t len)

(No file systems currently support writing.)

off_t lseek(int fd, off_t offset, int whence)

Files being automatically uncompressed during reading cannot seek backwards from the

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

current point.

int stat(const char *path, struct stat *sb)

int fstat(int fd, struct stat *sb)

The stat() and fstat() functions only fill out the following fields in the sb structure:

st_mode,st_nlink,st_uid,st_gid,st_size. The tftp file system cannot provide meaningful

values for this call, and the cd9660 file system always reports files having uid/gid of zero.

PAGER
The libsa library supplies a simple internal pager to ease reading the output of large commands.

void pager_open()

Initialises the pager and tells it that the next line output will be the top of the display. The

environment variable LINES is consulted to determine the number of lines to be displayed

before pausing.

void pager_close(void)

Closes the pager.

int pager_output(const char *lines)

Sends the lines in the NUL-terminated buffer at lines to the pager. Newline characters are

counted in order to determine the number of lines being output (wrapped lines are not

accounted for). The pager_output() function will return zero when all of the lines have

been output, or nonzero if the display was paused and the user elected to quit.

int pager_file(const char *fname)

Attempts to open and display the file fname. Returns -1 on error, 0 at EOF, or 1 if the user

elects to quit while reading.

MISC
char * devformat(struct devdesc *)

Format the specified device as a string.

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

int devparse(struct devdesc **dev, const char *devdesc, const char **path)

Parse the devdesc string of the form ‘device:[/path/to/file]’. The devsw table is used to

match the start of the ‘device’ string with dv_name. If dv_parsedev is non-NULL, then it

will be called to parse the rest of the string and allocate the struct devdesc for this path. If

NULL, then a default routine will be called that will allocate a simple struct devdesc, parse

a unit number and ensure there’s no trailing characters. If path is non-NULL, then a

pointer to the remainder of the devdesc string after the device specification is written.

int devinit(void) Calls all the dv_init routines in the devsw array, returning the number of routines that

returned an error.

void twiddle(void)

Successive calls emit the characters in the sequence |,/,-,\ followed by a backspace in order

to provide reassurance to the user.

REQUIRED LOW-LEVEL SUPPORT
The following resources are consumed by libsa - stack, heap, console and devices.

The stack must be established before libsa functions can be invoked. Stack requirements vary

depending on the functions and file systems used by the consumer and the support layer functions

detailed below.

The heap must be established before calling alloc() or open() by calling setheap(). Heap usage will vary

depending on the number of simultaneously open files, as well as client behaviour. Automatic

decompression will allocate more than 64K of data per open file.

Console access is performed via the getchar(), putchar() and ischar() functions detailed below.

Device access is initiated via devopen() and is performed through the dv_strategy(), dv_ioctl() and

dv_close() functions in the device switch structure that devopen() returns.

The consumer must provide the following support functions:

int getchar(void)

Return a character from the console, used by gets(), ngets() and pager functions.

int ischar(void)

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

Returns nonzero if a character is waiting from the console.

void putchar(int)

Write a character to the console, used by gets(), ngets(), *printf(), panic() and twiddle()

and thus by many other functions for debugging and informational output.

int devopen(struct open_file *of, const char *name, const char **file)

Open the appropriate device for the file named in name, returning in file a pointer to the

remaining body of name which does not refer to the device. The f_dev field in of will be

set to point to the devsw structure for the opened device if successful. Device identifiers

must always precede the path component, but may otherwise be arbitrarily formatted.

Used by open() and thus for all device-related I/O.

int devclose(struct open_file *of)

Close the device allocated for of. The device driver itself will already have been called for

the close; this call should clean up any allocation made by devopen only.

void __abort()

Calls panic() with a fixed string.

void panic(const char *msg, ...)

Signal a fatal and unrecoverable error condition. The msg ... arguments are as for printf().

INTERNAL FILE SYSTEMS
Internal file systems are enabled by the consumer exporting the array struct fs_ops *file_system[], which

should be initialised with pointers to struct fs_ops structures. The following file system handlers are

supplied by libsa, the consumer may supply other file systems of their own:

ufs_fsops The BSD UFS.

ext2fs_fsops Linux ext2fs file system.

tftp_fsops File access via TFTP.

nfs_fsops File access via NFS.

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

cd9660_fsops ISO 9660 (CD-ROM) file system.

gzipfs_fsops Stacked file system supporting gzipped files. When trying the gzipfs file system, libsa
appends .gz to the end of the filename, and then tries to locate the file using the other file

systems. Placement of this file system in the file_system[] array determines whether

gzipped files will be opened in preference to non-gzipped files. It is only possible to seek

a gzipped file forwards, and stat() and fstat() on gzipped files will report an invalid

length.

bzipfs_fsops The same as gzipfs_fsops, but for bzip2(1)-compressed files.

The array of struct fs_ops pointers should be terminated with a NULL.

DEVICES
Devices are exported by the supporting code via the array struct devsw *devsw[] which is a NULL

terminated array of pointers to device switch structures.

DRIVER INTERFACE
The driver needs to provide a common set of entry points that are used by libsa to interface with the

device.

struct devsw {

const char dv_name[DEV_NAMLEN];

int dv_type;

int (*dv_init)(void);

int (*dv_strategy)(void *devdata, int rw, daddr_t blk,

size_t size, char *buf, size_t *rsize);

int (*dv_open)(struct open_file *f, ...);

int (*dv_close)(struct open_file *f);

int (*dv_ioctl)(struct open_file *f, u_long cmd, void *data);

int (*dv_print)(int verbose);

void (*dv_cleanup)(void);

char * (*dv_fmtdev)(struct devdesc *);

int (*dv_parsedev)(struct devdesc **dev, const char *devpart,

const char **path);

bool (*dv_match)(struct devsw *dv, const char *devspec);

};

dv_name() The device’s name.

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

dv_type() Type of device. The supported types are:

DEVT_NONE

DEVT_DISK

DEVT_NET

DEVT_CD

DEVT_ZFS

DEVT_FD

Each type may have its own associated (struct type_devdesc), which has the generic (struct

devdesc) as its first member.

dv_init() Driver initialization routine. This routine should probe for available units. Drivers are

responsible for maintaining lists of units for later enumeration. No other driver routines

may be called before dv_init() returns.

dv_open() The driver open routine.

dv_close() The driver close routine.

dv_ioctl() The driver ioctl routine.

dv_print() Prints information about the available devices. Information should be presented with

pager_output().

dv_cleanup()

Cleans up any memory used by the device before the next stage is run.

dv_fmtdev()

Converts the specified devdesc to the canonical string representation for that device.

dv_parsedev()

Parses the device portion of a file path. The devpart will point to the ‘tail’ of device name,

possibly followed by a colon and a path within the device. The ‘tail’ is, by convention, the

part of the device specification that follows the dv_name part of the string. So when

devparse is parsing the string "disk3p5:/xxx", devpart will point to the ‘3’ in that string.

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

The parsing routine is expected to allocate a new struct devdesc or subclass and return it in

dev when successful. This routine should set path to point to the portion of the string after

device specification, or "/xxx" in the earlier example. Generally, code needing to parse a

path will use devparse instead of calling this routine directly.

dv_match() NULL to specify that all device paths starting with dv_name match. Otherwise, this

function returns 0 for a match and a non-zero errno to indicate why it didn’t match. This is

helpful when you claim the device path after using it to query properties on systems that

have uniform naming for different types of devices.

HISTORY
The libsa library contains contributions from many sources, including:

+o libsa from NetBSD

+o libc and libkern from FreeBSD 3.0.

+o zalloc from Matthew Dillon <dillon@backplane.com>

The reorganisation and port to FreeBSD 3.0, the environment functions and this manpage were written

by Mike Smith <msmith@FreeBSD.org>.

BUGS
The lack of detailed memory usage data is unhelpful.

LIBSA(3) FreeBSD Library Functions Manual LIBSA(3)

FreeBSD 14.0-RELEASE-p11 September 9, 2022 FreeBSD 14.0-RELEASE-p11

