
NAME
ucl_parser_new, ucl_parser_register_macro, ucl_parser_register_variable, ucl_parser_add_chunk,

ucl_parser_add_string, ucl_parser_add_file, ucl_parser_get_object, ucl_parser_get_error,

ucl_parser_free, ucl_pubkey_add, ucl_parser_set_filevars - universal configuration library parser and

utility functions

LIBRARY
UCL library (libucl, -lucl)

SYNOPSIS
#include <ucl.h>

DESCRIPTION
Libucl is a parser and C API to parse and generate ucl objects. Libucl consist of several groups of

functions:

Parser functions
Used to parse ucl files and provide interface to extract ucl object. Currently, libucl can parse only full

ucl documents, for instance, it is impossible to parse a part of document and therefore it is impossible

to use libucl as a streaming parser. In future, this limitation can be removed.

Emitting functions
Convert ucl objects to some textual or binary representation. Currently, libucl supports the following

exports:

+o JSON - valid json format (can possibly lose some original data, such as implicit arrays)

+o Config - human-readable configuration format (lossless)

+o YAML - embedded yaml format (has the same limitations as json output)

Conversion functions
Help to convert ucl objects to C types. These functions are used to convert ucl_object_t to C primitive

types, such as numbers, strings or boolean values.

Generation functions
Allow creation of ucl objects from C types and creating of complex ucl objects, such as hashes or

arrays from primitive ucl objects, such as numbers or strings.

Iteration functions

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

Iterate over ucl complex objects or over a chain of values, for example when a key in an object has

multiple values (that can be treated as implicit array or implicit consolidation).

Validation functions
Validation functions are used to validate some object obj using json-schema compatible object schema.

Both input and schema must be UCL objects to perform validation.

Utility functions
Provide basic utilities to manage ucl objects: creating, removing, retaining and releasing reference

count and so on.

PARSER FUNCTIONS
Parser functions operates with struct ucl_parser.

ucl_parser_new

struct ucl_parser* ucl_parser_new (int flags);

Creates new parser with the specified flags:

+o UCL_PARSER_KEY_LOWERCASE - lowercase keys parsed

+o UCL_PARSER_ZEROCOPY - try to use zero-copy mode when reading files (in zero-copy mode

text chunk being parsed without copying strings so it should exist till any object parsed is used)

+o UCL_PARSER_NO_TIME - treat time values as strings without parsing them as floats

ucl_parser_register_macro

void ucl_parser_register_macro (struct ucl_parser *parser,

const char *macro, ucl_macro_handler handler, void* ud);

Register new macro with name .macro parsed by handler handler that accepts opaque data pointer ud.

Macro handler should be of the following type:

bool (*ucl_macro_handler) (const unsigned char *data,

size_t len, void* ud);‘

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

Handler function accepts macro text data of length len and the opaque pointer ud. If macro is parsed

successfully the handler should return true. false indicates parsing failure and the parser can be

terminated.

ucl_parser_register_variable

void ucl_parser_register_variable (struct ucl_parser *parser,

const char *var, const char *value);

Register new variable $var that should be replaced by the parser to the value string.

ucl_parser_add_chunk

bool ucl_parser_add_chunk (struct ucl_parser *parser,

const unsigned char *data, size_t len);

Add new text chunk with data of length len to the parser. At the moment, libucl parser is not a

streamlined parser and chunk must contain the valid ucl object. For example, this object should be

valid:

{ "var": "value" }

while this one won’t be parsed correctly:

{ "var":

This limitation may possible be removed in future.

ucl_parser_add_string

bool ucl_parser_add_string (struct ucl_parser *parser,

const char *data, size_t len);

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

This function acts exactly like ucl_parser_add_chunk does but if len argument is zero, then the string

data must be zero-terminated and the actual length is calculated up to \0 character.

ucl_parser_add_file

bool ucl_parser_add_file (struct ucl_parser *parser,

const char *filename);

Load file filename and parse it with the specified parser. This function uses mmap call to load file,

therefore, it should not be shrunk during parsing. Otherwise, libucl can cause memory corruption and

terminate the calling application. This function is also used by the internal handler of include macro,

hence, this macro has the same limitation.

ucl_parser_get_object

ucl_object_t* ucl_parser_get_object (struct ucl_parser *parser);

If the ucl data has been parsed correctly this function returns the top object for the parser. Otherwise,

this function returns the NULL pointer. The reference count for ucl object returned is increased by

one, therefore, a caller should decrease reference by using ucl_object_unref to free object after usage.

ucl_parser_get_error

const char *ucl_parser_get_error(struct ucl_parser *parser);

Returns the constant error string for the parser object. If no error occurred during parsing a NULL

object is returned. A caller should not try to free or modify this string.

ucl_parser_free

void ucl_parser_free (struct ucl_parser *parser);

Frees memory occupied by the parser object. The reference count for top object is decreased as well,

however if the function ucl_parser_get_object was called previously then the top object won’t be freed.

ucl_pubkey_add

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

bool ucl_pubkey_add (struct ucl_parser *parser,

const unsigned char *key, size_t len);

This function adds a public key from text blob key of length len to the parser object. This public key

should be in the PEM format and can be used by .includes macro for checking signatures of files

included. Openssl support should be enabled to make this function working. If a key cannot be added

(e.g. due to format error) or openssl was not linked to libucl then this function returns false.

ucl_parser_set_filevars

bool ucl_parser_set_filevars (struct ucl_parser *parser,

const char *filename, bool need_expand);

Add the standard file variables to the parser based on the filename specified:

+o $FILENAME - a filename of ucl input

+o $CURDIR - a current directory of the input

For example, if a filename param is ../something.conf then the variables will have the following values:

+o $FILENAME - "../something.conf"

+o $CURDIR - ".."

if need_expand parameter is true then all relative paths are expanded using realpath call. In this

example if .. is /etc/dir then variables will have these values:

+o $FILENAME - "/etc/something.conf"

+o $CURDIR - "/etc"

Parser usage example
The following example loads, parses and extracts ucl object from stdin using libucl parser functions

(the length of input is limited to 8K):

char inbuf[8192];

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

struct ucl_parser *parser = NULL;

int ret = 0, r = 0;

ucl_object_t *obj = NULL;

FILE *in;

in = stdin;

parser = ucl_parser_new (0);

while (!feof (in) && r < (int)sizeof (inbuf)) {

r += fread (inbuf + r, 1, sizeof (inbuf) - r, in);

}

ucl_parser_add_chunk (parser, inbuf, r);

fclose (in);

if (ucl_parser_get_error (parser)) {

printf ("Error occurred: %s\n", ucl_parser_get_error (parser));

ret = 1;

}

else {

obj = ucl_parser_get_object (parser);

}

if (parser != NULL) {

ucl_parser_free (parser);

}

if (obj != NULL) {

ucl_object_unref (obj);

}

return ret;

EMITTING FUNCTIONS
Libucl can transform UCL objects to a number of tectual formats:

+o configuration (UCL_EMIT_CONFIG) - nginx like human readable configuration file where implicit

arrays are transformed to the duplicate keys

+o compact json: UCL_EMIT_JSON_COMPACT - single line valid json without spaces

+o formatted json: UCL_EMIT_JSON - pretty formatted JSON with newlines and spaces

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

+o compact yaml: UCL_EMIT_YAML - compact YAML output

Moreover, libucl API allows to select a custom set of emitting functions allowing efficient and

zero-copy output of libucl objects. Libucl uses the following structure to support this feature:

struct ucl_emitter_functions {

/** Append a single character */

int (*ucl_emitter_append_character) (unsigned char c, size_t nchars, void *ud);

/** Append a string of a specified length */

int (*ucl_emitter_append_len) (unsigned const char *str, size_t len, void *ud);

/** Append a 64 bit integer */

int (*ucl_emitter_append_int) (int64_t elt, void *ud);

/** Append floating point element */

int (*ucl_emitter_append_double) (double elt, void *ud);

/** Opaque userdata pointer */

void *ud;

};

This structure defines the following callbacks:

+o ucl_emitter_append_character - a function that is called to append nchars characters equal to c

+o ucl_emitter_append_len - used to append a string of length len starting from pointer str

+o ucl_emitter_append_int - this function applies to integer numbers

+o ucl_emitter_append_double - this function is intended to output floating point variable

The set of these functions could be used to output text formats of UCL objects to different structures or

streams.

Libucl provides the following functions for emitting UCL objects:

ucl_object_emit

unsigned char *ucl_object_emit (const ucl_object_t *obj, enum ucl_emitter emit_type);

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

Allocate a string that is suitable to fit the underlying UCL object obj and fill it with the textual

representation of the object obj according to style emit_type. The caller should free the returned string

after using.

ucl_object_emit_full

bool ucl_object_emit_full (const ucl_object_t *obj, enum ucl_emitter emit_type,

struct ucl_emitter_functions *emitter);

This function is similar to the previous with the exception that it accepts the additional argument

emitter that defines the concrete set of output functions. This emit function could be useful for custom

structures or streams emitters (including C++ ones, for example).

CONVERSION FUNCTIONS
Conversion functions are used to convert UCL objects to primitive types, such as strings, numbers, or

boolean values. There are two types of conversion functions:

+o safe: try to convert an ucl object to a primitive type and fail if such a conversion is not possible

+o unsafe: return primitive type without additional checks, if the object cannot be converted then some

reasonable default is returned (NULL for strings and 0 for numbers)

Also there is a single ucl_object_tostring_forced function that converts any UCL object (including

compound types - arrays and objects) to a string representation. For objects, arrays, booleans and

numeric types this function performs emitting to a compact json format actually.

Here is a list of all conversion functions:

+o ucl_object_toint - returns int64_t of UCL object

+o ucl_object_todouble - returns double of UCL object

+o ucl_object_toboolean - returns bool of UCL object

+o ucl_object_tostring - returns const char * of UCL object (this string is NULL terminated)

+o ucl_object_tolstring - returns const char * and size_t len of UCL object (string does not need to be

NULL terminated)

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

+o ucl_object_tostring_forced - returns string representation of any UCL object

Strings returned by these pointers are associated with the UCL object and exist over its lifetime. A

caller should not free this memory.

GENERATION FUNCTIONS
It is possible to generate UCL objects from C primitive types. Moreover, libucl allows creation and

modifying complex UCL objects, such as arrays or associative objects.

ucl_object_new

ucl_object_t * ucl_object_new (void)

Creates new object of type UCL_NULL. This object should be released by caller.

ucl_object_typed_new

ucl_object_t * ucl_object_typed_new (unsigned int type)

Create an object of a specified type: - UCL_OBJECT - UCL object - key/value pairs - UCL_ARRAY -

UCL array - UCL_INT - integer number - UCL_FLOAT - floating point number - UCL_STRING -

NULL terminated string - UCL_BOOLEAN - boolean value - UCL_TIME - time value (floating point

number of seconds) - UCL_USERDATA - opaque userdata pointer (may be used in macros) -

UCL_NULL - null value

This object should be released by caller.

Primitive objects generation
Libucl provides the functions similar to inverse conversion functions called with the specific C type: -

ucl_object_fromint - converts int64_t to UCL object - ucl_object_fromdouble - converts double to

UCL object - ucl_object_fromboolean - converts bool to UCL object - ucl_object_fromstring - converts

const char * to UCL object (this string should be NULL terminated) - ucl_object_fromlstring - converts

const char * and size_t len to UCL object (string does not need to be NULL terminated)

Also there is a function to generate UCL object from a string performing various parsing or conversion

operations called ucl_object_fromstring_common.

ucl_object_fromstring_common

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

ucl_object_t * ucl_object_fromstring_common (const char *str,

size_t len, enum ucl_string_flags flags)

This function is used to convert a string str of size len to a UCL object applying flags conversions. If

len is equal to zero then a str is assumed as NULL-terminated. This function supports the following

flags (a set of flags can be specified using logical OR operation):

+o UCL_STRING_ESCAPE - perform JSON escape

+o UCL_STRING_TRIM - trim leading and trailing whitespaces

+o UCL_STRING_PARSE_BOOLEAN - parse passed string and detect boolean

+o UCL_STRING_PARSE_INT - parse passed string and detect integer number

+o UCL_STRING_PARSE_DOUBLE - parse passed string and detect integer or float number

+o UCL_STRING_PARSE_TIME - parse time values as floating point numbers

+o UCL_STRING_PARSE_NUMBER - parse passed string and detect number (both float, integer and

time types)

+o UCL_STRING_PARSE - parse passed string (and detect booleans, numbers and time values)

+o UCL_STRING_PARSE_BYTES - assume that numeric multipliers are in bytes notation, for

example 10k means 10*1024 and not 10*1000 as assumed without this flag

If parsing operations fail then the resulting UCL object will be a UCL_STRING. A caller should

always check the type of the returned object and release it after using.

ITERATION FUNCTIONS
Iteration are used to iterate over UCL compound types: arrays and objects. Moreover, iterations could

be performed over the keys with multiple values (implicit arrays). There are two types of iterators API:

old and unsafe one via ucl_iterate_object and the proposed interface of safe iterators.

ucl_iterate_object

const ucl_object_t* ucl_iterate_object (const ucl_object_t *obj,

ucl_object_iter_t *iter, bool expand_values);

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

This function accepts opaque iterator pointer iter. In the first call this iterator must be initialized to

NULL. Iterator is changed by this function call. ucl_iterate_object returns the next UCL object in the

compound object obj or NULL if all objects have been iterated. The reference count of the object

returned is not increased, so a caller should not unref the object or modify its content (e.g. by inserting

to another compound object). The object obj should not be changed during the iteration process as

well. expand_values flag speicifies whether ucl_iterate_object should expand keys with multiple

values. The general rule is that if you need to iterate through the object or explicit array, then you

always need to set this flag to true. However, if you get some key in the object and want to extract all

its values then you should set expand_values to false. Mixing of iteration types is not permitted since

the iterator is set according to the iteration type and cannot be reused. Here is an example of iteration

over the objects using libucl API (assuming that top is UCL_OBJECT in this example):

ucl_object_iter_t it = NULL, it_obj = NULL;

const ucl_object_t *cur, *tmp;

/* Iterate over the object */

while ((obj = ucl_iterate_object (top, &it, true))) {

printf ("key: \"%s\"\n", ucl_object_key (obj));

/* Iterate over the values of a key */

while ((cur = ucl_iterate_object (obj, &it_obj, false))) {

printf ("value: \"%s\"\n",

ucl_object_tostring_forced (cur));

}

}

Safe iterators API
Safe iterators are defined to clarify iterating over UCL objects and simplify flattening of UCL objects

in non-trivial cases. For example, if there is an implicit array that contains another array and a boolean

value it is extremely unclear how to iterate over such an object. Safe iterators are desinged to define

two sorts of iteration:

1. Iteration over complex objects with expanding all values

2. Iteration over complex objects without expanding of values

The following example demonstrates the difference between these two types of iteration:

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

key = 1;

key = [2, 3, 4];

Iteration with expansion:

1, 2, 3, 4

Iteration without expansion:

1, [2, 3, 4]

UCL defines the following functions to manage safe iterators:

+o ucl_object_iterate_new - creates new safe iterator.

+o ucl_object_iterate_reset - resets iterator to a new object.

+o ucl_object_iterate_safe - safely iterate the object inside iterator. Note: function may allocate and

free memory during its operation. Therefore it returns NULL either while trying to access item after

the last one or when exception (such as memory allocation failure) happens.

+o ucl_object_iter_chk_excpn - check if the last call to ucl_object_iterate_safe ended up in

unrecoverable exception (e.g. ENOMEM).

+o ucl_object_iterate_free - free memory associated with the safe iterator.

Please note that unlike unsafe iterators, safe iterators must be explicitly initialized and freed. An assert

is likely generated if you use uninitialized or NULL iterator in all safe iterators functions.

ucl_object_iter_t it;

const ucl_object_t *cur;

it = ucl_object_iterate_new (obj);

while ((cur = ucl_object_iterate_safe (it, true)) != NULL) {

/* Do something */

}

/* Check error condition */

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

if (ucl_object_iter_chk_excpn (it)) {

ucl_object_iterate_free (it);

exit (1);

}

/* Switch to another object */

it = ucl_object_iterate_reset (it, another_obj);

while ((cur = ucl_object_iterate_safe (it, true)) != NULL) {

/* Do something else */

}

/* Check error condition */

if (ucl_object_iter_chk_excpn (it)) {

ucl_object_iterate_free (it);

exit (1);

}

ucl_object_iterate_free (it);

VALIDATION FUNCTIONS
Currently, there is only one validation function called ucl_object_validate. It performs validation of

object using the specified schema. This function is defined as following:

ucl_object_validate

bool ucl_object_validate (const ucl_object_t *schema,

const ucl_object_t *obj, struct ucl_schema_error *err);

This function uses ucl object schema, that must be valid in terms of json-schema draft v4, to validate

input object obj. If this function returns true then validation procedure has been succeed. Otherwise,

false is returned and err is set to a specific value. If a caller sets err to NULL then this function does

not set any error just returning false. Error is the structure defined as following:

struct ucl_schema_error {

enum ucl_schema_error_code code; /* error code */

char msg[128]; /* error message */

ucl_object_t *obj; /* object where error occurred */

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

};

Caller may use code field to get a numeric error code:

enum ucl_schema_error_code {

UCL_SCHEMA_OK = 0, /* no error */

UCL_SCHEMA_TYPE_MISMATCH, /* type of object is incorrect */

UCL_SCHEMA_INVALID_SCHEMA, /* schema is invalid */

UCL_SCHEMA_MISSING_PROPERTY,/* missing properties */

UCL_SCHEMA_CONSTRAINT, /* constraint found */

UCL_SCHEMA_MISSING_DEPENDENCY, /* missing dependency */

UCL_SCHEMA_UNKNOWN /* generic error */

};

msg is a string description of an error and obj is an object where error has occurred. Error object is not

allocated by libucl, so there is no need to free it after validation (a static object should thus be used).

AUTHORS
Vsevolod Stakhov <vsevolod@highsecure.ru>.

LIBUCL(3) LIBUCL(3)

Libucl manual 27 December, 2014 LIBUCL(3)

