LIBUNWIND-IA64(3) Programming Library LIBUNWIND-IA64(3)

NAME
libunwind-ia64 -- | A-64-specific support in libunwind

INTRODUCTION
The |A-64 version of libunwind uses a platform-string of ia64 and, at least in theory, should be able to
support al operating systems adhering to the processor-specific ABI defined for the Itanium Processor
Family. Thisincludes both little-endian Linux and big-endian HP-UX. Furthermore, to make it possible
for asingle library to unwind both 32- and 64-bit targets, the type unw_word t is always defined to be
64 bits wide (independent of the natural word-size of the host). Having said that, the current
implementation has been tested only with 1A-64 Linux.

When targeting | A-64, the libunwind header file defines the macro UNW_TARGET _|A64 as 1 and the
macro UNW_TARGET as‘‘ia64’’ (without the quotation marks). The former makes it possible for
platform-dependent unwind code to use conditional-compilation to select an appropriate
implementation. The latter is useful for stringification purposes and to construct
target-platform-specific symbols.

One special feature of |A-64 isthe use of NaT bits to support speculative execution. Often, NaT bits
are thought of asthe ‘*65-th bit'’ of ageneral register. However, to make everything fit into 64-hit
wide unw_word_t values, libunwind treats the NaT-bits like separate boolean registers, whose 64-bit
valueis either TRUE (non-zero) or FALSE (zero).

MACHINE-STATE
The machine-state (set of registers) that is accessible through libunwind depends on the type of stack
frame that a cursor pointsto. For normal frames, all *‘preserved’’ (callee-saved) registers are
accessible. For signal-trampoline frames, al registers (including ‘‘ scratch’” (caller-saved) registers) are
accessible. Most applications do not have to worry a-priori about which registers are accessible when.
In case of doubt, it is aways safe to try to access aregister (viaunw_get reg() or unw_get fpreg()) and
if the register isn’t accessible, the call will fail with areturn-value of -UNW_EBADREG.

Asaspecia exception to the above general rule, scratch registers r15-r18 are always accessible, even in
normal frames. This makesit possible to pass arguments, e.g., to exception handlers.

For adetailed description of the A-64 register usage convention, please see the *‘ Itanium Software

Conventions and Runtime Architecture Guide'’, available at:
http://www.intel.com/design/itanium/downloads/245358.htm

REGISTER NAMES
The IA-64-version of libunwind defines three kinds of register name macros:. frame-register macros,

Programming Library 16 August 2007 LIBUNWIND-IA64(3)

LIBUNWIND-IA64(3) Programming Library LIBUNWIND-IA64(3)

normal register macros, and convenience macros. Below, we describe each kind in turn:

FRAME-REGISTER MACROS
Frame-registers are special (pseudo) registers because they always have avalid value, even though
sometimes they do not get saved explicitly (e.g., if amemory stack frameis 16 bytesin size, the
previous stack-pointer value can be calculated simply as sp+16, so there is no need to save the
stack-pointer explicitly). Moreover, the set of frame register values uniquely identifies a stack frame.
The | A-64 architecture defines two stacks (a memory and aregister stack). Including the
instruction-pointer (IP), this means there are three frame registers:

UNW_IA64 _|IP:
Contains the instruction pointer (IP, or ‘* program counter’”) of the current stack frame. Given this

value, the remaining machine-state corresponds to the register-values that were present in the CPU
when it was just about to execute the instruction pointed to by UNW_1A64_|P. Bits0 and 1 of this
frame-register encode the slot number of the instruction. Note: Due to the way the call instruction
works on 1A-64, the slot number is usually zero, but can be non-zero, e.g., in the stack-frame of a
signal-handler trampoline.

UNW_lA64_SP:
Contains the (memory) stack-pointer value (SP).

UNW_IA64 BSP:
Contains the register backing-store pointer (BSP). Note: the value in this register is equal to the
contents of register ar.bsp at the time the instruction at UNW_IA64_|P was about to begin

execution.

NORMAL REGISTER MACROS
The following normal register name macros are available:

UNW_IA64_GR:
The base-index for general (integer) registers. Add an index in the range from 0..127 to get a
particular general register. For example, to access r4, the index UNW_1A64 _GR+4 should be used.
Registersr0 and r1 (gp) are read-only, and any attempt to write them will result in an error
(-UNW_EREADONLY REG). Even though rlisread-only, libunwind will automatically adjust
its value if the instruction-pointer (UNW _IA64 |P) ismodified. For example, if UNW_IA64 IPis
set to avalue inside a function func(), then reading UNW _IA64 GR+1 will return the
global-pointer value for this function.

UNW_IA64 NAT:
The base-index for the NaT bits of the general (integer) registers. A non-zero value in these

Programming Library 16 August 2007 LIBUNWIND-IA64(3)

LIBUNWIND-IA64(3) Programming Library LIBUNWIND-IA64(3)

registers corresponds to a set NaT-bit. Add an index in the range from 0..127 to get a particular
NaT-bit register. For example, to access the NaT bit of r4, theindex UNW_IA64 NAT+4 should

be used.

UNW_IA64 _FR:
The base-index for floating-point registers. Add an index in the range from 0..127 to get a

particular floating-point register. For example, to access {2, theindex UNW_IA64_FR+2 should
be used. Registers fO and f1 are read-only, and any attempt to write to indices UNW_IA64 FR+0
or UNW_1A64 FR+1 will resultin an error (-UNW_EREADONLY REG).

UNW_IA64 AR:
The base-index for application registers. Add an index in the range from 0..127 to get a particular

application register. For example, to access ar40, the index UNW_IA64_AR+40 should be used.
The 1A-64 architecture defines several application registers as *‘reserved for future use’’.
Attempting to access such registers resultsin an error ((UNW_EBADREG).

UNW_IA64 BR:
The base-index for branch registers. Add an index in the range from 0..7 to get a particular branch

register. For example, to access b6, the index UNW_IA64 BR+6 should be used.

UNW_IA64 PR:
Contains the set of predicate registers. This 64-bit wide register contains registers p0 through p63

inthe ‘*broad-side’’ format. Just like with the ‘*move predicates’ instruction, the registers are
mapped as if CFM.rrb.pr were set to 0. Thus, in general the value of predicate register pN with

N>=16 can be found in bit 16 + ((N-16)+CFM.rrb.pr) % 48.

UNW_lA64 CFM:
Contains the current-frame-mask register.

CONVENIENCE MACROS
Convenience macros are simply aliases for certain frequently used registers:

UNW_IAB4 GP:
Aliasfor UNW_IA64 GR+1, the global-pointer register.

UNW_IA64 TP:
Aliasfor UNW_IA64 GR+13, the thread-pointer register.

UNW_IA64 AR _RSC:
Aliasfor UNW_IA64 _GR+16, the register-stack configuration register.

16 August 2007 LIBUNWIND-1A64(3)

Programming Library

LIBUNWIND-IA64(3) Programming Library LIBUNWIND-IA64(3)

UNW_lA64 AR _BSP:
Aliasfor UNW_IA64 GR+17. Thisregister index accesses the value of register ar.bsp as of the
timeit was last saved explicitly. Thisisrarely what you want. Normally, you'll want to use
UNW_I|A64 BSPinstead.

UNW_IA64 AR BSPSTORE:
Aliasfor UNW_IA64 _GR+18, the register-backing store write pointer.

UNW_IAB64 AR _RNAT:
Aliasfor UNW_IA64 GR+19, the register-backing store NaT-collection register.

UNW_IAB4 AR_CCV:
Aliasfor UNW_IA64_GR+32, the compare-and-swap value register.

UNW_IA64 AR _CSD:
Aliasfor UNW_IA64 GR+25, the compare-and-swap-data register (used by 16-byte atomic
operations).

UNW_IA64 AR _UNAT:
Aliasfor UNW_IA64 GR+36, the user NaT-collection register.

UNW_IA64 AR FPSR:
Aliasfor UNW_IA64_GR+40, the floating-point status (and control) register.

UNW_IAB64_AR_PFS:
Aliasfor UNW_IA64 GR+64, the previous frame-state register.

UNW_IA64 AR LC:
Aliasfor UNW_IA64_GR+65 the loop-count register.

UNW_IA64 AR EC:
Aliasfor UNW_IA64_GR+66, the epilogue-count register.

THE UNWIND-CONTEXT TYPE
On 1A-64, unw_context_t issimply an alias for ucontext_t (as defined by the Single UNIX Spec). This
impliesthat it is possible to initialize a value of thistype not just with unw_getcontext(), but also with
getcontext(), for example. However, since thisis an 1A-64-specific extension to libunwind, portable
code should not rely on this equivalence.

SEE ALSO

Programming Library 16 August 2007 LIBUNWIND-IA64(3)

LIBUNWIND-IA64(3) Programming Library LIBUNWIND-IA64(3)

libunwind(3)

AUTHOR
David Mosberger-Tang
Email: dmosber ger @gmail.com
WWW: http://www.nongnu.or g/libunwind/.

Programming Library 16 August 2007 LIBUNWIND-IA64(3)

