
NAME
link - dynamic loader and link editor interface

SYNOPSIS
#include <sys/types.h>
#include <nlist.h>
#include <link.h>

DESCRIPTION
The include file <link.h> declares several structures that are present in dynamically linked programs and

libraries. The structures define the interface between several components of the link-editor and loader

mechanism. The layout of a number of these structures within the binaries resembles the a.out format in

many places as it serves such similar functions as symbol definitions (including the accompanying string

table) and relocation records needed to resolve references to external entities. It also records a number

of data structures unique to the dynamic loading and linking process. These include references to other

objects that are required to complete the link-editing process and indirection tables to facilitate Position

Independent Code (PIC for short) to improve sharing of code pages among different processes. The

collection of data structures described here will be referred to as the Run-time Relocation Section (RRS)

and is embedded in the standard text and data segments of the dynamically linked program or shared

object image as the existing a.out(5) format offers no room for it elsewhere.

Several utilities cooperate to ensure that the task of getting a program ready to run can complete

successfully in a way that optimizes the use of system resources. The compiler emits PIC code from

which shared libraries can be built by ld(1). The compiler also includes size information of any

initialized data items through the .size assembler directive. PIC code differs from conventional code in

that it accesses data variables through an indirection table, the Global Offset Table, by convention

accessible by the reserved name _GLOBAL_OFFSET_TABLE_. The exact mechanism used for this is

machine dependent, usually a machine register is reserved for the purpose. The rational behind this

construct is to generate code that is independent of the actual load address. Only the values contained in

the Global Offset Table may need updating at run-time depending on the load addresses of the various

shared objects in the address space.

Likewise, procedure calls to globally defined functions are redirected through the Procedure Linkage

Table (PLT) residing in the data segment of the core image. Again, this is done to avoid run-time

modifications to the text segment.

The linker-editor allocates the Global Offset Table and Procedure Linkage Table when combining PIC

object files into an image suitable for mapping into the process address space. It also collects all

symbols that may be needed by the run-time link-editor and stores these along with the image’s text and

data bits. Another reserved symbol, _DYNAMIC is used to indicate the presence of the run-time linker

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

structures. Whenever _DYNAMIC is relocated to 0, there is no need to invoke the run-time link-editor.

If this symbol is non-zero, it points at a data structure from which the location of the necessary

relocation- and symbol information can be derived. This is most notably used by the start-up module,

crt0. The _DYNAMIC structure is conventionally located at the start of the data segment of the image

to which it pertains.

DATA STRUCTURES
The data structures supporting dynamic linking and run-time relocation reside both in the text and data

segments of the image they apply to. The text segments contain read-only data such as symbols

descriptions and names, while the data segments contain the tables that need to be modified by during

the relocation process.

The _DYNAMIC symbol references a _dynamic structure:

struct _dynamic {

int d_version;

struct so_debug *d_debug;

union {

struct section_dispatch_table *d_sdt;

} d_un;

struct ld_entry *d_entry;

};

d_version This field provides for different versions of the dynamic linking implementation. The current

version numbers understood by ld(1) and ld.so(1) are LD_VERSION_SUN (3), which is used

by the SunOS 4.x releases, and LD_VERSION_BSD (8), which has been in use since

FreeBSD 1.1.

d_un Refers to a d_version dependent data structure.

so_debug this field provides debuggers with a hook to access symbol tables of shared objects loaded as

a result of the actions of the run-time link-editor.

The section_dispatch_table structure is the main "dispatcher" table, containing offsets into the image’s

segments where various symbol and relocation information is located.

struct section_dispatch_table {

struct so_map *sdt_loaded;

long sdt_sods;

long sdt_filler1;

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

long sdt_got;

long sdt_plt;

long sdt_rel;

long sdt_hash;

long sdt_nzlist;

long sdt_filler2;

long sdt_buckets;

long sdt_strings;

long sdt_str_sz;

long sdt_text_sz;

long sdt_plt_sz;

};

sdt_loaded

A pointer to the first link map loaded (see below). This field is set by ld.so

sdt_sods The start of a (linked) list of shared object descriptors needed by this object.

sdt_filler1 Deprecated (used by SunOS to specify library search rules).

sdt_got The location of the Global Offset Table within this image.

sdt_plt The location of the Procedure Linkage Table within this image.

sdt_rel The location of an array of relocation_info structures (see a.out(5)) specifying run-time

relocations.

sdt_hash The location of the hash table for fast symbol lookup in this object’s symbol table.

sdt_nzlist The location of the symbol table.

sdt_filler2 Currently unused.

sdt_buckets

The number of buckets in sdt_hash

sdt_strings

The location of the symbol string table that goes with sdt_nzlist.

sdt_str_sz The size of the string table.

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

sdt_text_sz

The size of the object’s text segment.

sdt_plt_sz The size of the Procedure Linkage Table.

A sod structure describes a shared object that is needed to complete the link edit process of the object

containing it. A list of such objects (chained through sod_next) is pointed at by the sdt_sods in the

section_dispatch_table structure.

struct sod {

long sod_name;

u_int sod_library : 1,

sod_reserved : 31;

short sod_major;

short sod_minor;

long sod_next;

};

sod_name The offset in the text segment of a string describing this link object.

sod_library If set, sod_name specifies a library that is to be searched for by ld.so. The path name is

obtained by searching a set of directories (see also ldconfig(8)) for a shared object matching

lib<sod_name>.so.n.m. If not set, sod_name should point at a full path name for the desired

shared object.

sod_major Specifies the major version number of the shared object to load.

sod_minor Specifies the preferred minor version number of the shared object to load.

The run-time link-editor maintains a list of structures called link maps to keep track of all shared objects

loaded into a process’ address space. These structures are only used at run-time and do not occur within

the text or data segment of an executable or shared library.

struct so_map {

caddr_t som_addr;

char *som_path;

struct so_map *som_next;

struct sod *som_sod;

caddr_t som_sodbase;

u_int som_write : 1;

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

struct _dynamic *som_dynamic;

caddr_t som_spd;

};

som_addr The address at which the shared object associated with this link map has been loaded.

som_path The full path name of the loaded object.

som_next Pointer to the next link map.

som_sod The sod structure that was responsible for loading this shared object.

som_sodbase Tossed out in later versions of the run-time linker.

som_write Set if (some portion of) this object’s text segment is currently writable.

som_dynamic Pointer to this object’s _dynamic structure.

som_spd Hook for attaching private data maintained by the run-time link-editor.

Symbol description with size. This is simply an nlist structure with one field (nz_size) added. Used to

convey size information on items in the data segment of shared objects. An array of these lives in the

shared object’s text segment and is addressed by the sdt_nzlist field of section_dispatch_table.

struct nzlist {

struct nlist nlist;

u_long nz_size;

#define nz_un nlist.n_un

#define nz_strx nlist.n_un.n_strx

#define nz_name nlist.n_un.n_name

#define nz_type nlist.n_type

#define nz_value nlist.n_value

#define nz_desc nlist.n_desc

#define nz_other nlist.n_other

};

nlist (see nlist(3)).

nz_size The size of the data represented by this symbol.

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

A hash table is included within the text segment of shared object to facilitate quick lookup of symbols

during run-time link-editing. The sdt_hash field of the section_dispatch_table structure points at an

array of rrs_hash structures:

struct rrs_hash {

int rh_symbolnum; /* symbol number */

int rh_next; /* next hash entry */

};

rh_symbolnum The index of the symbol in the shared object’s symbol table (as given by the

ld_symbols field).

rh_next In case of collisions, this field is the offset of the next entry in this hash table bucket. It

is zero for the last bucket element.

The rt_symbol structure is used to keep track of run-time allocated commons and data items copied from

shared objects. These items are kept on linked list and is exported through the dd_cc field in the

so_debug structure (see below) for use by debuggers.

struct rt_symbol {

struct nzlist *rt_sp;

struct rt_symbol *rt_next;

struct rt_symbol *rt_link;

caddr_t rt_srcaddr;

struct so_map *rt_smp;

};

rt_sp The symbol description.

rt_next Virtual address of next rt_symbol.

rt_link Next in hash bucket. Used internally by ld.so.

rt_srcaddr Location of the source of initialized data within a shared object.

rt_smp The shared object which is the original source of the data that this run-time symbol describes.

The so_debug structure is used by debuggers to gain knowledge of any shared objects that have been

loaded in the process’s address space as a result of run-time link-editing. Since the run-time link-editor

runs as a part of process initialization, a debugger that wishes to access symbols from shared objects can

only do so after the link-editor has been called from crt0. A dynamically linked binary contains a

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

so_debug structure which can be located by means of the d_debug field in _dynamic.

struct so_debug {

int dd_version;

int dd_in_debugger;

int dd_sym_loaded;

char *dd_bpt_addr;

int dd_bpt_shadow;

struct rt_symbol *dd_cc;

};

dd_version Version number of this interface.

dd_in_debugger Set by the debugger to indicate to the run-time linker that the program is run under

control of a debugger.

dd_sym_loaded Set by the run-time linker whenever it adds symbols by loading shared objects.

dd_bpt_addr The address where a breakpoint will be set by the run-time linker to divert control to

the debugger. This address is determined by the start-up module, crt0.o, to be some

convenient place before the call to _main.

dd_bpt_shadow Contains the original instruction that was at dd_bpt_addr. The debugger is expected to

put this instruction back before continuing the program.

dd_cc A pointer to the linked list of run-time allocated symbols that the debugger may be

interested in.

The ld_entry structure defines a set of service routines within ld.so.

struct ld_entry {

void *(*dlopen)(char *, int);

int (*dlclose)(void *);

void *(*dlsym)(void *, char *);

char *(*dlerror)(void);

};

The crt_ldso structure defines the interface between the start-up code in crt0 and ld.so.

struct crt_ldso {

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

int crt_ba;

int crt_dzfd;

int crt_ldfd;

struct _dynamic *crt_dp;

char **crt_ep;

caddr_t crt_bp;

char *crt_prog;

char *crt_ldso;

struct ld_entry *crt_ldentry;

};

#define CRT_VERSION_SUN 1

#define CRT_VERSION_BSD_2 2

#define CRT_VERSION_BSD_3 3

#define CRT_VERSION_BSD_4 4

crt_ba The virtual address at which ld.so was loaded by crt0.

crt_dzfd On SunOS systems, this field contains an open file descriptor to "/dev/zero" used to get

demand paged zeroed pages. On FreeBSD systems it contains -1.

crt_ldfd Contains an open file descriptor that was used by crt0 to load ld.so.

crt_dp A pointer to main’s _dynamic structure.

crt_ep A pointer to the environment strings.

crt_bp The address at which a breakpoint will be placed by the run-time linker if the main program is

run by a debugger. See so_debug

crt_prog

The name of the main program as determined by crt0 (CRT_VERSION_BSD3 only).

crt_ldso The path of the run-time linker as mapped by crt0 (CRT_VERSION_BSD4 only).

The hints_header and hints_bucket structures define the layout of the library hints, normally found in

"/var/run/ld.so.hints", which is used by ld.so to quickly locate the shared object images in the file

system. The organization of the hints file is not unlike that of an "a.out" object file, in that it contains a

header determining the offset and size of a table of fixed sized hash buckets and a common string pool.

struct hints_header {

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

long hh_magic;

#define HH_MAGIC 011421044151

long hh_version;

#define LD_HINTS_VERSION_1 1

long hh_hashtab;

long hh_nbucket;

long hh_strtab;

long hh_strtab_sz;

long hh_ehints;

};

hh_magic Hints file magic number.

hh_version Interface version number.

hh_hashtab Offset of hash table.

hh_strtab Offset of string table.

hh_strtab_sz Size of strings.

hh_ehints Maximum usable offset in hints file.

/*

* Hash table element in hints file.

*/

struct hints_bucket {

int hi_namex;

int hi_pathx;

int hi_dewey[MAXDEWEY];

int hi_ndewey;

#define hi_major hi_dewey[0]

#define hi_minor hi_dewey[1]

int hi_next;

};

hi_namex Index of the string identifying the library.

hi_pathx Index of the string representing the full path name of the library.

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

hi_dewey The version numbers of the shared library.

hi_ndewey The number of valid entries in hi_dewey.

hi_next Next bucket in case of hashing collisions.

CAVEATS
Only the (GNU) C compiler currently supports the creation of shared libraries. Other programming

languages cannot be used.

LINK(5) FreeBSD File Formats Manual LINK(5)

FreeBSD 14.0-RELEASE-p6 October 23, 1993 FreeBSD 14.0-RELEASE-p6

