
NAME
lli - directly execute programs from LLVM bitcode

SYNOPSIS
lli [options] [filename] [program args]

DESCRIPTION
lli directly executes programs in LLVM bitcode format. It takes a program in LLVM bitcode format

and executes it using a just-in-time compiler or an interpreter.

lli is not an emulator. It will not execute IR of different architectures and it can only interpret (or

JIT-compile) for the host architecture.

The JIT compiler takes the same arguments as other tools, like llc, but they don’t necessarily work for

the interpreter.

If filename is not specified, then lli reads the LLVM bitcode for the program from standard input.

The optional args specified on the command line are passed to the program as arguments.

GENERAL OPTIONS

-fake-argv0=executable
Override the argv[0] value passed into the executing program.

-force-interpreter={false,true}
If set to true, use the interpreter even if a just-in-time compiler is available for this architecture.

Defaults to false.

-help
Print a summary of command line options.

-load=pluginfilename
Causes lli to load the plugin (shared object) named pluginfilename and use it for optimization.

-stats
Print statistics from the code-generation passes. This is only meaningful for the just-in-time

compiler, at present.

-time-passes

LLI(1) LLVM LLI(1)

15 2023-12-15 LLI(1)



Record the amount of time needed for each code-generation pass and print it to standard error.

-version
Print out the version of lli and exit without doing anything else.

TARGET OPTIONS

-mtriple=target triple
Override the target triple specified in the input bitcode file with the specified string. This may

result in a crash if you pick an architecture which is not compatible with the current system.

-march=arch
Specify the architecture for which to generate assembly, overriding the target encoded in the

bitcode file. See the output of llc -help for a list of valid architectures. By default this is inferred

from the target triple or autodetected to the current architecture.

-mcpu=cpuname
Specify a specific chip in the current architecture to generate code for. By default this is inferred

from the target triple and autodetected to the current architecture. For a list of available CPUs,

use: llvm-as < /dev/null | llc -march=xyz -mcpu=help

-mattr=a1,+a2,-a3,...
Override or control specific attributes of the target, such as whether SIMD operations are enabled

or not. The default set of attributes is set by the current CPU. For a list of available attributes, use:

llvm-as < /dev/null | llc -march=xyz -mattr=help

FLOATING POINT OPTIONS

-disable-excess-fp-precision
Disable optimizations that may increase floating point precision.

-enable-no-infs-fp-math
Enable optimizations that assume no Inf values.

-enable-no-nans-fp-math
Enable optimizations that assume no NAN values.

-enable-unsafe-fp-math
Causes lli to enable optimizations that may decrease floating point precision.

LLI(1) LLVM LLI(1)

15 2023-12-15 LLI(1)



-soft-float
Causes lli to generate software floating point library calls instead of equivalent hardware

instructions.

CODE GENERATION OPTIONS

-code-model=model
Choose the code model from:

default: Target default code model

tiny: Tiny code model

small: Small code model

kernel: Kernel code model

medium: Medium code model

large: Large code model

-disable-post-RA-scheduler
Disable scheduling after register allocation.

-disable-spill-fusing
Disable fusing of spill code into instructions.

-jit-enable-eh
Exception handling should be enabled in the just-in-time compiler.

-join-liveintervals
Coalesce copies (default=true).

-nozero-initialized-in-bss
Don’t place zero-initialized symbols into the BSS section.

-pre-RA-sched=scheduler
Instruction schedulers available (before register allocation):

=default: Best scheduler for the target

=none: No scheduling: breadth first sequencing

=simple: Simple two pass scheduling: minimize critical path and maximize processor utilization

=simple-noitin: Simple two pass scheduling: Same as simple except using generic latency

=list-burr: Bottom-up register reduction list scheduling

=list-tdrr: Top-down register reduction list scheduling

LLI(1) LLVM LLI(1)

15 2023-12-15 LLI(1)



=list-td: Top-down list scheduler

-regalloc=allocator
Register allocator to use (default=linearscan)

=bigblock: Big-block register allocator

=linearscan: linear scan register allocator

=local: local register allocator

=simple: simple register allocator

-relocation-model=model
Choose relocation model from:

=default: Target default relocation model

=static: Non-relocatable code

=pic: Fully relocatable, position independent code

=dynamic-no-pic: Relocatable external references, non-relocatable code

-spiller
Spiller to use (default=local)

=simple: simple spiller

=local: local spiller

-x86-asm-syntax=syntax
Choose style of code to emit from X86 backend:

=att: Emit AT&T-style assembly

=intel: Emit Intel-style assembly

EXIT STATUS
If lli fails to load the program, it will exit with an exit code of 1. Otherwise, it will return the exit code

of the program it executes.

SEE ALSO
llc(1)

AUTHOR
Maintained by the LLVM Team (https://llvm.org/).

LLI(1) LLVM LLI(1)

15 2023-12-15 LLI(1)



COPYRIGHT
2003-2023, LLVM Project

LLI(1) LLVM LLI(1)

15 2023-12-15 LLI(1)


