
NAME
llvm-exegesis - LLVM Machine Instruction Benchmark

SYNOPSIS
llvm-exegesis [options]

DESCRIPTION
llvm-exegesis is a benchmarking tool that uses information available in LLVM to measure host

machine instruction characteristics like latency, throughput, or port decomposition.

Given an LLVM opcode name and a benchmarking mode, llvm-exegesis generates a code snippet that

makes execution as serial (resp. as parallel) as possible so that we can measure the latency (resp.

inverse throughput/uop decomposition) of the instruction. The code snippet is jitted and executed on

the host subtarget. The time taken (resp. resource usage) is measured using hardware performance

counters. The result is printed out as YAML to the standard output.

The main goal of this tool is to automatically (in)validate the LLVM’s TableDef scheduling models. To

that end, we also provide analysis of the results.

llvm-exegesis can also benchmark arbitrary user-provided code snippets.

EXAMPLE 1: BENCHMARKING INSTRUCTIONS
Assume you have an X86-64 machine. To measure the latency of a single instruction, run:

$ llvm-exegesis -mode=latency -opcode-name=ADD64rr

Measuring the uop decomposition or inverse throughput of an instruction works similarly:

$ llvm-exegesis -mode=uops -opcode-name=ADD64rr

$ llvm-exegesis -mode=inverse_throughput -opcode-name=ADD64rr

The output is a YAML document (the default is to write to stdout, but you can redirect the

output to a file using -benchmarks-file):

key:

opcode_name: ADD64rr

mode: latency

config: ’’

cpu_name: haswell

LLVM-EXEGESIS(1) LLVM LLVM-EXEGESIS(1)

15 2023-12-15 LLVM-EXEGESIS(1)

llvm_triple: x86_64-unknown-linux-gnu

num_repetitions: 10000

measurements:

- { key: latency, value: 1.0058, debug_string: ’’ }

error: ’’

info: ’explicit self cycles, selecting one aliasing configuration.

Snippet:

ADD64rr R8, R8, R10

’

...

To measure the latency of all instructions for the host architecture, run:

$ llvm-exegesis -mode=latency -opcode-index=-1

EXAMPLE 2: BENCHMARKING A CUSTOM CODE SNIPPET
To measure the latency/uops of a custom piece of code, you can specify the snippets-file option (- reads

from standard input).

$ echo "vzeroupper" | llvm-exegesis -mode=uops -snippets-file=-

Real-life code snippets typically depend on registers or memory. llvm-exegesis checks the

liveliness of registers (i.e. any register use has a corresponding def or is a "live in"). If your code

depends on the value of some registers, you have two options:

+o Mark the register as requiring a definition. llvm-exegesis will automatically assign a value to the

register. This can be done using the directive LLVM-EXEGESIS-DEFREG <reg name>

<hex_value>, where <hex_value> is a bit pattern used to fill <reg_name>. If <hex_value> is smaller

than the register width, it will be sign-extended.

+o Mark the register as a "live in". llvm-exegesis will benchmark using whatever value was in this

registers on entry. This can be done using the directive LLVM-EXEGESIS-LIVEIN <reg name>.

For example, the following code snippet depends on the values of XMM1 (which will be set by

the tool) and the memory buffer passed in RDI (live in).

LLVM-EXEGESIS-LIVEIN RDI

LLVM-EXEGESIS-DEFREG XMM1 42

vmulps (%rdi), %xmm1, %xmm2

vhaddps %xmm2, %xmm2, %xmm3

LLVM-EXEGESIS(1) LLVM LLVM-EXEGESIS(1)

15 2023-12-15 LLVM-EXEGESIS(1)

addq $0x10, %rdi

EXAMPLE 3: ANALYSIS
Assuming you have a set of benchmarked instructions (either latency or uops) as YAML in file

/tmp/benchmarks.yaml, you can analyze the results using the following command:

$ llvm-exegesis -mode=analysis \

-benchmarks-file=/tmp/benchmarks.yaml \

-analysis-clusters-output-file=/tmp/clusters.csv \

-analysis-inconsistencies-output-file=/tmp/inconsistencies.html

This will group the instructions into clusters with the same performance characteristics. The

clusters will be written out to /tmp/clusters.csv in the following format:

cluster_id,opcode_name,config,sched_class

...

2,ADD32ri8_DB,,WriteALU,1.00

2,ADD32ri_DB,,WriteALU,1.01

2,ADD32rr,,WriteALU,1.01

2,ADD32rr_DB,,WriteALU,1.00

2,ADD32rr_REV,,WriteALU,1.00

2,ADD64i32,,WriteALU,1.01

2,ADD64ri32,,WriteALU,1.01

2,MOVSX64rr32,,BSWAP32r_BSWAP64r_MOVSX64rr32,1.00

2,VPADDQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.02

2,VPSUBQYrr,,VPADDBYrr_VPADDDYrr_VPADDQYrr_VPADDWYrr_VPSUBBYrr_VPSUBDYrr_VPSUBQYrr_VPSUBWYrr,1.01

2,ADD64ri8,,WriteALU,1.00

2,SETBr,,WriteSETCC,1.01

...

llvm-exegesis will also analyze the clusters to point out inconsistencies in the scheduling

information. The output is an html file. For example, /tmp/inconsistencies.html will contain

messages like the following : [image]

Note that the scheduling class names will be resolved only when llvm-exegesis is compiled in

debug mode, else only the class id will be shown. This does not invalidate any of the analysis

results though.

OPTIONS

LLVM-EXEGESIS(1) LLVM LLVM-EXEGESIS(1)

15 2023-12-15 LLVM-EXEGESIS(1)

-help
Print a summary of command line options.

-opcode-index=<LLVM opcode index>
Specify the opcode to measure, by index. Specifying -1 will result in measuring every existing

opcode. See example 1 for details. Either opcode-index, opcode-name or snippets-file must be set.

-opcode-name=<opcode name 1>,<opcode name 2>,...
Specify the opcode to measure, by name. Several opcodes can be specified as a comma-separated

list. See example 1 for details. Either opcode-index, opcode-name or snippets-file must be set.

-snippets-file=<filename>
Specify the custom code snippet to measure. See example 2 for details. Either opcode-index,

opcode-name or snippets-file must be set.

-mode=[latency|uops|inverse_throughput|analysis]
Specify the run mode. Note that some modes have additional requirements and options.

latency mode can be make use of either RDTSC or LBR. latency[LBR] is only available on X86

(at least Skylake). To run in latency mode, a positive value must be specified for

x86-lbr-sample-period and --repetition-mode=loop.

In analysis mode, you also need to specify at least one of the -analysis-clusters-output-file= and

-analysis-inconsistencies-output-file=.

-x86-lbr-sample-period=<nBranches/sample>
Specify the LBR sampling period - how many branches before we take a sample. When a positive

value is specified for this option and when the mode is latency, we will use LBRs for measuring.

On choosing the "right" sampling period, a small value is preferred, but throttling could occur if

the sampling is too frequent. A prime number should be used to avoid consistently skipping certain

blocks.

-repetition-mode=[duplicate|loop|min]
Specify the repetition mode. duplicate will create a large, straight line basic block with

num-repetitions instructions (repeating the snippet num-repetitions/snippet size times). loop will,

optionally, duplicate the snippet until the loop body contains at least loop-body-size instructions,

and then wrap the result in a loop which will execute num-repetitions instructions (thus, again,

repeating the snippet num-repetitions/snippet size times). The loop mode, especially with loop

unrolling tends to better hide the effects of the CPU frontend on architectures that cache decoded

instructions, but consumes a register for counting iterations. If performing an analysis over many

LLVM-EXEGESIS(1) LLVM LLVM-EXEGESIS(1)

15 2023-12-15 LLVM-EXEGESIS(1)

opcodes, it may be best to instead use the min mode, which will run each other mode, and produce

the minimal measured result.

-num-repetitions=<Number of repetitions>
Specify the target number of executed instructions. Note that the actual repetition count of the

snippet will be num-repetitions/snippet size. Higher values lead to more accurate measurements

but lengthen the benchmark.

-loop-body-size=<Preferred loop body size>
Only effective for -repetition-mode=[loop|min]. Instead of looping over the snippet directly, first

duplicate it so that the loop body contains at least this many instructions. This potentially results in

loop body being cached in the CPU Op Cache / Loop Cache, which allows to which may have

higher throughput than the CPU decoders.

-max-configs-per-opcode=<value>
Specify the maximum configurations that can be generated for each opcode. By default this is 1,

meaning that we assume that a single measurement is enough to characterize an opcode. This

might not be true of all instructions: for example, the performance characteristics of the LEA

instruction on X86 depends on the value of assigned registers and immediates. Setting a value of

-max-configs-per-opcode larger than 1 allows llvm-exegesis to explore more configurations to

discover if some register or immediate assignments lead to different performance characteristics.

-benchmarks-file=</path/to/file>
File to read (analysis mode) or write (latency/uops/inverse_throughput modes) benchmark results.

"-" uses stdin/stdout.

-analysis-clusters-output-file=</path/to/file>
If provided, write the analysis clusters as CSV to this file. "-" prints to stdout. By default, this

analysis is not run.

-analysis-inconsistencies-output-file=</path/to/file>
If non-empty, write inconsistencies found during analysis to this file. - prints to stdout. By default,

this analysis is not run.

-analysis-clustering=[dbscan,naive]
Specify the clustering algorithm to use. By default DBSCAN will be used. Naive clustering

algorithm is better for doing further work on the -analysis-inconsistencies-output-file= output, it

will create one cluster per opcode, and check that the cluster is stable (all points are neighbours).

-analysis-numpoints=<dbscan numPoints parameter>

LLVM-EXEGESIS(1) LLVM LLVM-EXEGESIS(1)

15 2023-12-15 LLVM-EXEGESIS(1)

Specify the numPoints parameters to be used for DBSCAN clustering (analysis mode, DBSCAN

only).

-analysis-clustering-epsilon=<dbscan epsilon parameter>
Specify the epsilon parameter used for clustering of benchmark points (analysis mode).

-analysis-inconsistency-epsilon=<epsilon>
Specify the epsilon parameter used for detection of when the cluster is different from the LLVM

schedule profile values (analysis mode).

-analysis-display-unstable-clusters
If there is more than one benchmark for an opcode, said benchmarks may end up not being

clustered into the same cluster if the measured performance characteristics are different. by default

all such opcodes are filtered out. This flag will instead show only such unstable opcodes.

-ignore-invalid-sched-class=false
If set, ignore instructions that do not have a sched class (class idx = 0).

-mcpu=<cpu name>
If set, measure the cpu characteristics using the counters for this CPU. This is useful when creating

new sched models (the host CPU is unknown to LLVM).

--dump-object-to-disk=true
By default, llvm-exegesis will dump the generated code to a temporary file to enable code

inspection. You may disable it to speed up the execution and save disk space.

EXIT STATUS
llvm-exegesis returns 0 on success. Otherwise, an error message is printed to standard error, and the

tool returns a non 0 value.

AUTHOR
Maintained by the LLVM Team (https://llvm.org/).

COPYRIGHT
2003-2023, LLVM Project

LLVM-EXEGESIS(1) LLVM LLVM-EXEGESIS(1)

15 2023-12-15 LLVM-EXEGESIS(1)

