
NAME
llvm-mca - LLVM Machine Code Analyzer

SYNOPSIS
llvm-mca [options] [input]

DESCRIPTION
llvm-mca is a performance analysis tool that uses information available in LLVM (e.g. scheduling

models) to statically measure the performance of machine code in a specific CPU.

Performance is measured in terms of throughput as well as processor resource consumption. The tool

currently works for processors with a backend for which there is a scheduling model available in

LLVM.

The main goal of this tool is not just to predict the performance of the code when run on the target, but

also help with diagnosing potential performance issues.

Given an assembly code sequence, llvm-mca estimates the Instructions Per Cycle (IPC), as well as

hardware resource pressure. The analysis and reporting style were inspired by the IACA tool from

Intel.

For example, you can compile code with clang, output assembly, and pipe it directly into llvm-mca for

analysis:

$ clang foo.c -O2 -target x86_64-unknown-unknown -S -o - | llvm-mca -mcpu=btver2

Or for Intel syntax:

$ clang foo.c -O2 -target x86_64-unknown-unknown -mllvm -x86-asm-syntax=intel -S -o - | llvm-mca -mcpu=btver2

(llvm-mca detects Intel syntax by the presence of an .intel_syntax directive at the beginning of

the input. By default its output syntax matches that of its input.)

Scheduling models are not just used to compute instruction latencies and throughput, but also to

understand what processor resources are available and how to simulate them.

By design, the quality of the analysis conducted by llvm-mca is inevitably affected by the

quality of the scheduling models in LLVM.

If you see that the performance report is not accurate for a processor, please file a bug against

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

the appropriate backend.

OPTIONS
If input is "-" or omitted, llvm-mca reads from standard input. Otherwise, it will read from the specified

filename.

If the -o option is omitted, then llvm-mca will send its output to standard output if the input is from

standard input. If the -o option specifies "-", then the output will also be sent to standard output.

-help
Print a summary of command line options.

-o <filename>
Use <filename> as the output filename. See the summary above for more details.

-mtriple=<target triple>
Specify a target triple string.

-march=<arch>
Specify the architecture for which to analyze the code. It defaults to the host default target.

-mcpu=<cpuname>
Specify the processor for which to analyze the code. By default, the cpu name is autodetected

from the host.

-output-asm-variant=<variant id>
Specify the output assembly variant for the report generated by the tool. On x86, possible values

are [0, 1]. A value of 0 (vic. 1) for this flag enables the AT&T (vic. Intel) assembly format for the

code printed out by the tool in the analysis report.

-print-imm-hex
Prefer hex format for numeric literals in the output assembly printed as part of the report.

-dispatch=<width>
Specify a different dispatch width for the processor. The dispatch width defaults to field

’IssueWidth’ in the processor scheduling model. If width is zero, then the default dispatch width is

used.

-register-file-size=<size>
Specify the size of the register file. When specified, this flag limits how many physical registers

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

are available for register renaming purposes. A value of zero for this flag means "unlimited number

of physical registers".

-iterations=<number of iterations>
Specify the number of iterations to run. If this flag is set to 0, then the tool sets the number of

iterations to a default value (i.e. 100).

-noalias=<bool>
If set, the tool assumes that loads and stores don’t alias. This is the default behavior.

-lqueue=<load queue size>
Specify the size of the load queue in the load/store unit emulated by the tool. By default, the tool

assumes an unbound number of entries in the load queue. A value of zero for this flag is ignored,

and the default load queue size is used instead.

-squeue=<store queue size>
Specify the size of the store queue in the load/store unit emulated by the tool. By default, the tool

assumes an unbound number of entries in the store queue. A value of zero for this flag is ignored,

and the default store queue size is used instead.

-timeline
Enable the timeline view.

-timeline-max-iterations=<iterations>
Limit the number of iterations to print in the timeline view. By default, the timeline view prints

information for up to 10 iterations.

-timeline-max-cycles=<cycles>
Limit the number of cycles in the timeline view, or use 0 for no limit. By default, the number of

cycles is set to 80.

-resource-pressure
Enable the resource pressure view. This is enabled by default.

-register-file-stats
Enable register file usage statistics.

-dispatch-stats
Enable extra dispatch statistics. This view collects and analyzes instruction dispatch events, as well

as static/dynamic dispatch stall events. This view is disabled by default.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

-scheduler-stats
Enable extra scheduler statistics. This view collects and analyzes instruction issue events. This

view is disabled by default.

-retire-stats
Enable extra retire control unit statistics. This view is disabled by default.

-instruction-info
Enable the instruction info view. This is enabled by default.

-show-encoding
Enable the printing of instruction encodings within the instruction info view.

-show-barriers
Enable the printing of LoadBarrier and StoreBarrier flags within the instruction info view.

-all-stats
Print all hardware statistics. This enables extra statistics related to the dispatch logic, the hardware

schedulers, the register file(s), and the retire control unit. This option is disabled by default.

-all-views
Enable all the view.

-instruction-tables
Prints resource pressure information based on the static information available from the processor

model. This differs from the resource pressure view because it doesn’t require that the code is

simulated. It instead prints the theoretical uniform distribution of resource pressure for every

instruction in sequence.

-bottleneck-analysis
Print information about bottlenecks that affect the throughput. This analysis can be expensive, and

it is disabled by default. Bottlenecks are highlighted in the summary view. Bottleneck analysis is

currently not supported for processors with an in-order backend.

-json
Print the requested views in valid JSON format. The instructions and the processor resources are

printed as members of special top level JSON objects. The individual views refer to them by

index. However, not all views are currently supported. For example, the report from the bottleneck

analysis is not printed out in JSON. All the default views are currently supported.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

-disable-cb
Force usage of the generic CustomBehaviour and InstrPostProcess classes rather than using the

target specific implementation. The generic classes never detect any custom hazards or make any

post processing modifications to instructions.

EXIT STATUS
llvm-mca returns 0 on success. Otherwise, an error message is printed to standard error, and the tool

returns 1.

USING MARKERS TO ANALYZE SPECIFIC CODE BLOCKS
llvm-mca allows for the optional usage of special code comments to mark regions of the assembly code

to be analyzed. A comment starting with substring LLVM-MCA-BEGIN marks the beginning of a

code region. A comment starting with substring LLVM-MCA-END marks the end of a code region.

For example:

LLVM-MCA-BEGIN

...

LLVM-MCA-END

If no user-defined region is specified, then llvm-mca assumes a default region which contains

every instruction in the input file. Every region is analyzed in isolation, and the final

performance report is the union of all the reports generated for every code region.

Code regions can have names. For example:

LLVM-MCA-BEGIN A simple example

add %eax, %eax

LLVM-MCA-END

The code from the example above defines a region named "A simple example" with a single

instruction in it. Note how the region name doesn’t have to be repeated in the

LLVM-MCA-END directive. In the absence of overlapping regions, an anonymous

LLVM-MCA-END directive always ends the currently active user defined region.

Example of nesting regions:

LLVM-MCA-BEGIN foo

add %eax, %edx

LLVM-MCA-BEGIN bar

sub %eax, %edx

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

LLVM-MCA-END bar

LLVM-MCA-END foo

Example of overlapping regions:

LLVM-MCA-BEGIN foo

add %eax, %edx

LLVM-MCA-BEGIN bar

sub %eax, %edx

LLVM-MCA-END foo

add %eax, %edx

LLVM-MCA-END bar

Note that multiple anonymous regions cannot overlap. Also, overlapping regions cannot have

the same name.

There is no support for marking regions from high-level source code, like C or C++. As a

workaround, inline assembly directives may be used:

int foo(int a, int b) {

__asm volatile("# LLVM-MCA-BEGIN foo":::"memory");

a += 42;

__asm volatile("# LLVM-MCA-END":::"memory");

a *= b;

return a;

}

However, this interferes with optimizations like loop vectorization and may have an impact on

the code generated. This is because the __asm statements are seen as real code having important

side effects, which limits how the code around them can be transformed. If users want to make

use of inline assembly to emit markers, then the recommendation is to always verify that the

output assembly is equivalent to the assembly generated in the absence of markers. The Clang

options to emit optimization reports can also help in detecting missed optimizations.

HOW LLVM-MCA WORKS
llvm-mca takes assembly code as input. The assembly code is parsed into a sequence of MCInst with

the help of the existing LLVM target assembly parsers. The parsed sequence of MCInst is then

analyzed by a Pipeline module to generate a performance report.

The Pipeline module simulates the execution of the machine code sequence in a loop of iterations

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

(default is 100). During this process, the pipeline collects a number of execution related statistics. At

the end of this process, the pipeline generates and prints a report from the collected statistics.

Here is an example of a performance report generated by the tool for a dot-product of two packed float

vectors of four elements. The analysis is conducted for target x86, cpu btver2. The following result can

be produced via the following command using the example located at

test/tools/llvm-mca/X86/BtVer2/dot-product.s:

$ llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=300 dot-product.s

Iterations: 300

Instructions: 900

Total Cycles: 610

Total uOps: 900

Dispatch Width: 2

uOps Per Cycle: 1.48

IPC: 1.48

Block RThroughput: 2.0

Instruction Info:

[1]: #uOps

[2]: Latency

[3]: RThroughput

[4]: MayLoad

[5]: MayStore

[6]: HasSideEffects (U)

[1] [2] [3] [4] [5] [6] Instructions:

1 2 1.00 vmulps %xmm0, %xmm1, %xmm2

1 3 1.00 vhaddps %xmm2, %xmm2, %xmm3

1 3 1.00 vhaddps %xmm3, %xmm3, %xmm4

Resources:

[0] - JALU0

[1] - JALU1

[2] - JDiv

[3] - JFPA

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

[4] - JFPM

[5] - JFPU0

[6] - JFPU1

[7] - JLAGU

[8] - JMul

[9] - JSAGU

[10] - JSTC

[11] - JVALU0

[12] - JVALU1

[13] - JVIMUL

Resource pressure per iteration:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

- - - 2.00 1.00 2.00 1.00 - - - - - - -

Resource pressure by instruction:

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] Instructions:

- - - - 1.00 - 1.00 - - - - - - - vmulps %xmm0, %xmm1, %xmm2

- - - 1.00 - 1.00 - - - - - - - - vhaddps %xmm2, %xmm2, %xmm3

- - - 1.00 - 1.00 - - - - - - - - vhaddps %xmm3, %xmm3, %xmm4

According to this report, the dot-product kernel has been executed 300 times, for a total of 900

simulated instructions. The total number of simulated micro opcodes (uOps) is also 900.

The report is structured in three main sections. The first section collects a few performance

numbers; the goal of this section is to give a very quick overview of the performance

throughput. Important performance indicators are IPC, uOps Per Cycle, and Block
RThroughput (Block Reciprocal Throughput).

Field DispatchWidth is the maximum number of micro opcodes that are dispatched to the

out-of-order backend every simulated cycle. For processors with an in-order backend,

DispatchWidth is the maximum number of micro opcodes issued to the backend every simulated

cycle.

IPC is computed dividing the total number of simulated instructions by the total number of

cycles.

Field Block RThroughput is the reciprocal of the block throughput. Block throughput is a

theoretical quantity computed as the maximum number of blocks (i.e. iterations) that can be

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

executed per simulated clock cycle in the absence of loop carried dependencies. Block

throughput is superiorly limited by the dispatch rate, and the availability of hardware resources.

In the absence of loop-carried data dependencies, the observed IPC tends to a theoretical

maximum which can be computed by dividing the number of instructions of a single iteration by

the Block RThroughput.

Field ’uOps Per Cycle’ is computed dividing the total number of simulated micro opcodes by

the total number of cycles. A delta between Dispatch Width and this field is an indicator of a

performance issue. In the absence of loop-carried data dependencies, the observed ’uOps Per

Cycle’ should tend to a theoretical maximum throughput which can be computed by dividing

the number of uOps of a single iteration by the Block RThroughput.

Field uOps Per Cycle is bounded from above by the dispatch width. That is because the dispatch

width limits the maximum size of a dispatch group. Both IPC and ’uOps Per Cycle’ are limited

by the amount of hardware parallelism. The availability of hardware resources affects the

resource pressure distribution, and it limits the number of instructions that can be executed in

parallel every cycle. A delta between Dispatch Width and the theoretical maximum uOps per

Cycle (computed by dividing the number of uOps of a single iteration by the Block

RThroughput) is an indicator of a performance bottleneck caused by the lack of hardware

resources. In general, the lower the Block RThroughput, the better.

In this example, uOps per iteration/Block RThroughput is 1.50. Since there are no loop-carried

dependencies, the observed uOps Per Cycle is expected to approach 1.50 when the number of

iterations tends to infinity. The delta between the Dispatch Width (2.00), and the theoretical

maximum uOp throughput (1.50) is an indicator of a performance bottleneck caused by the lack

of hardware resources, and the Resource pressure view can help to identify the problematic

resource usage.

The second section of the report is the instruction info view. It shows the latency and reciprocal

throughput of every instruction in the sequence. It also reports extra information related to the

number of micro opcodes, and opcode properties (i.e., ’MayLoad’, ’MayStore’, and

’HasSideEffects’).

Field RThroughput is the reciprocal of the instruction throughput. Throughput is computed as

the maximum number of instructions of a same type that can be executed per clock cycle in the

absence of operand dependencies. In this example, the reciprocal throughput of a vector float

multiply is 1 cycles/instruction. That is because the FP multiplier JFPM is only available from

pipeline JFPU1.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

Instruction encodings are displayed within the instruction info view when flag -show-encoding

is specified.

Below is an example of -show-encoding output for the dot-product kernel:

Instruction Info:

[1]: #uOps

[2]: Latency

[3]: RThroughput

[4]: MayLoad

[5]: MayStore

[6]: HasSideEffects (U)

[7]: Encoding Size

[1] [2] [3] [4] [5] [6] [7] Encodings: Instructions:

1 2 1.00 4 c5 f0 59 d0 vmulps %xmm0, %xmm1, %xmm2

1 4 1.00 4 c5 eb 7c da vhaddps %xmm2, %xmm2, %xmm3

1 4 1.00 4 c5 e3 7c e3 vhaddps %xmm3, %xmm3, %xmm4

The Encoding Size column shows the size in bytes of instructions. The Encodings column

shows the actual instruction encodings (byte sequences in hex).

The third section is the Resource pressure view. This view reports the average number of

resource cycles consumed every iteration by instructions for every processor resource unit

available on the target. Information is structured in two tables. The first table reports the

number of resource cycles spent on average every iteration. The second table correlates the

resource cycles to the machine instruction in the sequence. For example, every iteration of the

instruction vmulps always executes on resource unit [6] (JFPU1 - floating point pipeline #1),

consuming an average of 1 resource cycle per iteration. Note that on AMD Jaguar, vector

floating-point multiply can only be issued to pipeline JFPU1, while horizontal floating-point

additions can only be issued to pipeline JFPU0.

The resource pressure view helps with identifying bottlenecks caused by high usage of specific

hardware resources. Situations with resource pressure mainly concentrated on a few resources

should, in general, be avoided. Ideally, pressure should be uniformly distributed between

multiple resources.

Timeline View
The timeline view produces a detailed report of each instruction’s state transitions through an

instruction pipeline. This view is enabled by the command line option -timeline. As instructions

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

transition through the various stages of the pipeline, their states are depicted in the view report. These

states are represented by the following characters:

+o D : Instruction dispatched.

+o e : Instruction executing.

+o E : Instruction executed.

+o R : Instruction retired.

+o = : Instruction already dispatched, waiting to be executed.

+o - : Instruction executed, waiting to be retired.

Below is the timeline view for a subset of the dot-product example located in

test/tools/llvm-mca/X86/BtVer2/dot-product.s and processed by llvm-mca using the following

command:

$ llvm-mca -mtriple=x86_64-unknown-unknown -mcpu=btver2 -iterations=3 -timeline dot-product.s

Timeline view:

012345

Index 0123456789

[0,0] DeeER. . . vmulps %xmm0, %xmm1, %xmm2

[0,1] D==eeeER . . vhaddps %xmm2, %xmm2, %xmm3

[0,2] .D====eeeER . vhaddps %xmm3, %xmm3, %xmm4

[1,0] .DeeE-----R . vmulps %xmm0, %xmm1, %xmm2

[1,1] . D=eeeE---R . vhaddps %xmm2, %xmm2, %xmm3

[1,2] . D====eeeER . vhaddps %xmm3, %xmm3, %xmm4

[2,0] . DeeE-----R . vmulps %xmm0, %xmm1, %xmm2

[2,1] . D====eeeER . vhaddps %xmm2, %xmm2, %xmm3

[2,2] . D======eeeER vhaddps %xmm3, %xmm3, %xmm4

Average Wait times (based on the timeline view):

[0]: Executions

[1]: Average time spent waiting in a scheduler’s queue

[2]: Average time spent waiting in a scheduler’s queue while ready

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

[3]: Average time elapsed from WB until retire stage

[0] [1] [2] [3]

0. 3 1.0 1.0 3.3 vmulps %xmm0, %xmm1, %xmm2

1. 3 3.3 0.7 1.0 vhaddps %xmm2, %xmm2, %xmm3

2. 3 5.7 0.0 0.0 vhaddps %xmm3, %xmm3, %xmm4

3 3.3 0.5 1.4 <total>

The timeline view is interesting because it shows instruction state changes during execution. It

also gives an idea of how the tool processes instructions executed on the target, and how their

timing information might be calculated.

The timeline view is structured in two tables. The first table shows instructions changing state

over time (measured in cycles); the second table (named Average Wait times) reports useful

timing statistics, which should help diagnose performance bottlenecks caused by long data

dependencies and sub-optimal usage of hardware resources.

An instruction in the timeline view is identified by a pair of indices, where the first index

identifies an iteration, and the second index is the instruction index (i.e., where it appears in the

code sequence). Since this example was generated using 3 iterations: -iterations=3, the iteration

indices range from 0-2 inclusively.

Excluding the first and last column, the remaining columns are in cycles. Cycles are numbered

sequentially starting from 0.

From the example output above, we know the following:

+o Instruction [1,0] was dispatched at cycle 1.

+o Instruction [1,0] started executing at cycle 2.

+o Instruction [1,0] reached the write back stage at cycle 4.

+o Instruction [1,0] was retired at cycle 10.

Instruction [1,0] (i.e., vmulps from iteration #1) does not have to wait in the scheduler’s queue

for the operands to become available. By the time vmulps is dispatched, operands are already

available, and pipeline JFPU1 is ready to serve another instruction. So the instruction can be

immediately issued on the JFPU1 pipeline. That is demonstrated by the fact that the instruction

only spent 1cy in the scheduler’s queue.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

There is a gap of 5 cycles between the write-back stage and the retire event. That is because

instructions must retire in program order, so [1,0] has to wait for [0,2] to be retired first (i.e., it

has to wait until cycle 10).

In the example, all instructions are in a RAW (Read After Write) dependency chain. Register

%xmm2 written by vmulps is immediately used by the first vhaddps, and register %xmm3

written by the first vhaddps is used by the second vhaddps. Long data dependencies negatively

impact the ILP (Instruction Level Parallelism).

In the dot-product example, there are anti-dependencies introduced by instructions from

different iterations. However, those dependencies can be removed at register renaming stage (at

the cost of allocating register aliases, and therefore consuming physical registers).

Table Average Wait times helps diagnose performance issues that are caused by the presence of

long latency instructions and potentially long data dependencies which may limit the ILP. Last

row, <total>, shows a global average over all instructions measured. Note that llvm-mca, by

default, assumes at least 1cy between the dispatch event and the issue event.

When the performance is limited by data dependencies and/or long latency instructions, the

number of cycles spent while in the ready state is expected to be very small when compared

with the total number of cycles spent in the scheduler’s queue. The difference between the two

counters is a good indicator of how large of an impact data dependencies had on the execution

of the instructions. When performance is mostly limited by the lack of hardware resources, the

delta between the two counters is small. However, the number of cycles spent in the queue

tends to be larger (i.e., more than 1-3cy), especially when compared to other low latency

instructions.

Bottleneck Analysis
The -bottleneck-analysis command line option enables the analysis of performance bottlenecks.

This analysis is potentially expensive. It attempts to correlate increases in backend pressure (caused by

pipeline resource pressure and data dependencies) to dynamic dispatch stalls.

Below is an example of -bottleneck-analysis output generated by llvm-mca for 500 iterations of the

dot-product example on btver2.

Cycles with backend pressure increase [48.07%]

Throughput Bottlenecks:

Resource Pressure [47.77%]

- JFPA [47.77%]

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

- JFPU0 [47.77%]

Data Dependencies: [0.30%]

- Register Dependencies [0.30%]

- Memory Dependencies [0.00%]

Critical sequence based on the simulation:

Instruction Dependency Information

+----< 2. vhaddps %xmm3, %xmm3, %xmm4

|

| < loop carried >

|

| 0. vmulps %xmm0, %xmm1, %xmm2

+----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [probability: 74%]

+----> 2. vhaddps %xmm3, %xmm3, %xmm4 ## REGISTER dependency: %xmm3

|

| < loop carried >

|

+----> 1. vhaddps %xmm2, %xmm2, %xmm3 ## RESOURCE interference: JFPA [probability: 74%]

According to the analysis, throughput is limited by resource pressure and not by data

dependencies. The analysis observed increases in backend pressure during 48.07% of the

simulated run. Almost all those pressure increase events were caused by contention on processor

resources JFPA/JFPU0.

The critical sequence is the most expensive sequence of instructions according to the simulation.

It is annotated to provide extra information about critical register dependencies and resource

interferences between instructions.

Instructions from the critical sequence are expected to significantly impact performance. By

construction, the accuracy of this analysis is strongly dependent on the simulation and (as

always) by the quality of the processor model in llvm.

Bottleneck analysis is currently not supported for processors with an in-order backend.

Extra Statistics to Further Diagnose Performance Issues
The -all-stats command line option enables extra statistics and performance counters for the dispatch

logic, the reorder buffer, the retire control unit, and the register file.

Below is an example of -all-stats output generated by llvm-mca for 300 iterations of the dot-product

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

example discussed in the previous sections.

Dynamic Dispatch Stall Cycles:

RAT - Register unavailable: 0

RCU - Retire tokens unavailable: 0

SCHEDQ - Scheduler full: 272 (44.6%)

LQ - Load queue full: 0

SQ - Store queue full: 0

GROUP - Static restrictions on the dispatch group: 0

Dispatch Logic - number of cycles where we saw N micro opcodes dispatched:

[# dispatched], [# cycles]

0, 24 (3.9%)

1, 272 (44.6%)

2, 314 (51.5%)

Schedulers - number of cycles where we saw N micro opcodes issued:

[# issued], [# cycles]

0, 7 (1.1%)

1, 306 (50.2%)

2, 297 (48.7%)

Scheduler’s queue usage:

[1] Resource name.

[2] Average number of used buffer entries.

[3] Maximum number of used buffer entries.

[4] Total number of buffer entries.

[1] [2] [3] [4]

JALU01 0 0 20

JFPU01 17 18 18

JLSAGU 0 0 12

Retire Control Unit - number of cycles where we saw N instructions retired:

[# retired], [# cycles]

0, 109 (17.9%)

1, 102 (16.7%)

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

2, 399 (65.4%)

Total ROB Entries: 64

Max Used ROB Entries: 35 (54.7%)

Average Used ROB Entries per cy: 32 (50.0%)

Register File statistics:

Total number of mappings created: 900

Max number of mappings used: 35

* Register File #1 -- JFpuPRF:

Number of physical registers: 72

Total number of mappings created: 900

Max number of mappings used: 35

* Register File #2 -- JIntegerPRF:

Number of physical registers: 64

Total number of mappings created: 0

Max number of mappings used: 0

If we look at the Dynamic Dispatch Stall Cycles table, we see the counter for SCHEDQ reports

272 cycles. This counter is incremented every time the dispatch logic is unable to dispatch a

full group because the scheduler’s queue is full.

Looking at the Dispatch Logic table, we see that the pipeline was only able to dispatch two

micro opcodes 51.5% of the time. The dispatch group was limited to one micro opcode 44.6%

of the cycles, which corresponds to 272 cycles. The dispatch statistics are displayed by either

using the command option -all-stats or -dispatch-stats.

The next table, Schedulers, presents a histogram displaying a count, representing the number of

micro opcodes issued on some number of cycles. In this case, of the 610 simulated cycles, single

opcodes were issued 306 times (50.2%) and there were 7 cycles where no opcodes were issued.

The Scheduler’s queue usage table shows that the average and maximum number of buffer

entries (i.e., scheduler queue entries) used at runtime. Resource JFPU01 reached its maximum

(18 of 18 queue entries). Note that AMD Jaguar implements three schedulers:

+o JALU01 - A scheduler for ALU instructions.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

+o JFPU01 - A scheduler floating point operations.

+o JLSAGU - A scheduler for address generation.

The dot-product is a kernel of three floating point instructions (a vector multiply followed by

two horizontal adds). That explains why only the floating point scheduler appears to be used.

A full scheduler queue is either caused by data dependency chains or by a sub-optimal usage of

hardware resources. Sometimes, resource pressure can be mitigated by rewriting the kernel

using different instructions that consume different scheduler resources. Schedulers with a small

queue are less resilient to bottlenecks caused by the presence of long data dependencies. The

scheduler statistics are displayed by using the command option -all-stats or -scheduler-stats.

The next table, Retire Control Unit, presents a histogram displaying a count, representing the

number of instructions retired on some number of cycles. In this case, of the 610 simulated

cycles, two instructions were retired during the same cycle 399 times (65.4%) and there were

109 cycles where no instructions were retired. The retire statistics are displayed by using the

command option -all-stats or -retire-stats.

The last table presented is Register File statistics. Each physical register file (PRF) used by the

pipeline is presented in this table. In the case of AMD Jaguar, there are two register files, one

for floating-point registers (JFpuPRF) and one for integer registers (JIntegerPRF). The table

shows that of the 900 instructions processed, there were 900 mappings created. Since this

dot-product example utilized only floating point registers, the JFPuPRF was responsible for

creating the 900 mappings. However, we see that the pipeline only used a maximum of 35 of 72

available register slots at any given time. We can conclude that the floating point PRF was the

only register file used for the example, and that it was never resource constrained. The register

file statistics are displayed by using the command option -all-stats or -register-file-stats.

In this example, we can conclude that the IPC is mostly limited by data dependencies, and not

by resource pressure.

Instruction Flow
This section describes the instruction flow through the default pipeline of llvm-mca, as well as the

functional units involved in the process.

The default pipeline implements the following sequence of stages used to process instructions.

+o Dispatch (Instruction is dispatched to the schedulers).

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

+o Issue (Instruction is issued to the processor pipelines).

+o Write Back (Instruction is executed, and results are written back).

+o Retire (Instruction is retired; writes are architecturally committed).

The in-order pipeline implements the following sequence of stages: * InOrderIssue (Instruction

is issued to the processor pipelines). * Retire (Instruction is retired; writes are architecturally

committed).

llvm-mca assumes that instructions have all been decoded and placed into a queue before the

simulation start. Therefore, the instruction fetch and decode stages are not modeled.

Performance bottlenecks in the frontend are not diagnosed. Also, llvm-mca does not model

branch prediction.

Instruction Dispatch
During the dispatch stage, instructions are picked in program order from a queue of already decoded

instructions, and dispatched in groups to the simulated hardware schedulers.

The size of a dispatch group depends on the availability of the simulated hardware resources. The

processor dispatch width defaults to the value of the IssueWidth in LLVM’s scheduling model.

An instruction can be dispatched if:

+o The size of the dispatch group is smaller than processor’s dispatch width.

+o There are enough entries in the reorder buffer.

+o There are enough physical registers to do register renaming.

+o The schedulers are not full.

Scheduling models can optionally specify which register files are available on the processor.

llvm-mca uses that information to initialize register file descriptors. Users can limit the number

of physical registers that are globally available for register renaming by using the command

option -register-file-size. A value of zero for this option means unbounded. By knowing how

many registers are available for renaming, the tool can predict dispatch stalls caused by the lack

of physical registers.

The number of reorder buffer entries consumed by an instruction depends on the number of

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

micro-opcodes specified for that instruction by the target scheduling model. The reorder buffer

is responsible for tracking the progress of instructions that are "in-flight", and retiring them in

program order. The number of entries in the reorder buffer defaults to the value specified by

field MicroOpBufferSize in the target scheduling model.

Instructions that are dispatched to the schedulers consume scheduler buffer entries. llvm-mca
queries the scheduling model to determine the set of buffered resources consumed by an

instruction. Buffered resources are treated like scheduler resources.

Instruction Issue
Each processor scheduler implements a buffer of instructions. An instruction has to wait in the

scheduler’s buffer until input register operands become available. Only at that point, does the

instruction becomes eligible for execution and may be issued (potentially out-of-order) for execution.

Instruction latencies are computed by llvm-mca with the help of the scheduling model.

llvm-mca’s scheduler is designed to simulate multiple processor schedulers. The scheduler is

responsible for tracking data dependencies, and dynamically selecting which processor resources are

consumed by instructions. It delegates the management of processor resource units and resource

groups to a resource manager. The resource manager is responsible for selecting resource units that are

consumed by instructions. For example, if an instruction consumes 1cy of a resource group, the

resource manager selects one of the available units from the group; by default, the resource manager

uses a round-robin selector to guarantee that resource usage is uniformly distributed between all units

of a group.

llvm-mca’s scheduler internally groups instructions into three sets:

+o WaitSet: a set of instructions whose operands are not ready.

+o ReadySet: a set of instructions ready to execute.

+o IssuedSet: a set of instructions executing.

Depending on the operands availability, instructions that are dispatched to the scheduler are

either placed into the WaitSet or into the ReadySet.

Every cycle, the scheduler checks if instructions can be moved from the WaitSet to the

ReadySet, and if instructions from the ReadySet can be issued to the underlying pipelines. The

algorithm prioritizes older instructions over younger instructions.

Write-Back and Retire Stage

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

Issued instructions are moved from the ReadySet to the IssuedSet. There, instructions wait until they

reach the write-back stage. At that point, they get removed from the queue and the retire control unit is

notified.

When instructions are executed, the retire control unit flags the instruction as "ready to retire."

Instructions are retired in program order. The register file is notified of the retirement so that it can

free the physical registers that were allocated for the instruction during the register renaming stage.

Load/Store Unit and Memory Consistency Model
To simulate an out-of-order execution of memory operations, llvm-mca utilizes a simulated load/store

unit (LSUnit) to simulate the speculative execution of loads and stores.

Each load (or store) consumes an entry in the load (or store) queue. Users can specify flags -lqueue and

-squeue to limit the number of entries in the load and store queues respectively. The queues are

unbounded by default.

The LSUnit implements a relaxed consistency model for memory loads and stores. The rules are:

1. A younger load is allowed to pass an older load only if there are no intervening stores or barriers

between the two loads.

2. A younger load is allowed to pass an older store provided that the load does not alias with the store.

3. A younger store is not allowed to pass an older store.

4. A younger store is not allowed to pass an older load.

By default, the LSUnit optimistically assumes that loads do not alias (-noalias=true) store

operations. Under this assumption, younger loads are always allowed to pass older stores.

Essentially, the LSUnit does not attempt to run any alias analysis to predict when loads and

stores do not alias with each other.

Note that, in the case of write-combining memory, rule 3 could be relaxed to allow reordering of

non-aliasing store operations. That being said, at the moment, there is no way to further relax

the memory model (-noalias is the only option). Essentially, there is no option to specify a

different memory type (e.g., write-back, write-combining, write-through; etc.) and consequently

to weaken, or strengthen, the memory model.

Other limitations are:

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

+o The LSUnit does not know when store-to-load forwarding may occur.

+o The LSUnit does not know anything about cache hierarchy and memory types.

+o The LSUnit does not know how to identify serializing operations and memory fences.

The LSUnit does not attempt to predict if a load or store hits or misses the L1 cache. It only

knows if an instruction "MayLoad" and/or "MayStore." For loads, the scheduling model

provides an "optimistic" load-to-use latency (which usually matches the load-to-use latency for

when there is a hit in the L1D).

llvm-mca does not (on its own) know about serializing operations or memory-barrier like

instructions. The LSUnit used to conservatively use an instruction’s "MayLoad", "MayStore",

and unmodeled side effects flags to determine whether an instruction should be treated as a

memory-barrier. This was inaccurate in general and was changed so that now each instruction

has an IsAStoreBarrier and IsALoadBarrier flag. These flags are mca specific and default to

false for every instruction. If any instruction should have either of these flags set, it should be

done within the target’s InstrPostProcess class. For an example, look at the

X86InstrPostProcess::postProcessInstruction method within

llvm/lib/Target/X86/MCA/X86CustomBehaviour.cpp.

A load/store barrier consumes one entry of the load/store queue. A load/store barrier enforces

ordering of loads/stores. A younger load cannot pass a load barrier. Also, a younger store

cannot pass a store barrier. A younger load has to wait for the memory/load barrier to execute.

A load/store barrier is "executed" when it becomes the oldest entry in the load/store queue(s).

That also means, by construction, all of the older loads/stores have been executed.

In conclusion, the full set of load/store consistency rules are:

1. A store may not pass a previous store.

2. A store may not pass a previous load (regardless of -noalias).

3. A store has to wait until an older store barrier is fully executed.

4. A load may pass a previous load.

5. A load may not pass a previous store unless -noalias is set.

6. A load has to wait until an older load barrier is fully executed.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

In-order Issue and Execute
In-order processors are modelled as a single InOrderIssueStage stage. It bypasses Dispatch, Scheduler

and Load/Store unit. Instructions are issued as soon as their operand registers are available and

resource requirements are met. Multiple instructions can be issued in one cycle according to the value

of the IssueWidth parameter in LLVM’s scheduling model.

Once issued, an instruction is moved to IssuedInst set until it is ready to retire. llvm-mca ensures that

writes are committed in-order. However, an instruction is allowed to commit writes and retire

out-of-order if RetireOOO property is true for at least one of its writes.

Custom Behaviour
Due to certain instructions not being expressed perfectly within their scheduling model, llvm-mca isn’t

always able to simulate them perfectly. Modifying the scheduling model isn’t always a viable option

though (maybe because the instruction is modeled incorrectly on purpose or the instruction’s behaviour

is quite complex). The CustomBehaviour class can be used in these cases to enforce proper instruction

modeling (often by customizing data dependencies and detecting hazards that llvm-mca has no way of

knowing about).

llvm-mca comes with one generic and multiple target specific CustomBehaviour classes. The generic

class will be used if the -disable-cb flag is used or if a target specific CustomBehaviour class doesn’t

exist for that target. (The generic class does nothing.) Currently, the CustomBehaviour class is only a

part of the in-order pipeline, but there are plans to add it to the out-of-order pipeline in the future.

CustomBehaviour’s main method is checkCustomHazard() which uses the current instruction and a list

of all instructions still executing within the pipeline to determine if the current instruction should be

dispatched. As output, the method returns an integer representing the number of cycles that the current

instruction must stall for (this can be an underestimate if you don’t know the exact number and a value

of 0 represents no stall).

If you’d like to add a CustomBehaviour class for a target that doesn’t already have one, refer to an

existing implementation to see how to set it up. The classes are implemented within the target specific

backend (for example /llvm/lib/Target/AMDGPU/MCA/) so that they can access backend symbols.

Custom Views
llvm-mca comes with several Views such as the Timeline View and Summary View. These Views are

generic and can work with most (if not all) targets. If you wish to add a new View to llvm-mca and it

does not require any backend functionality that is not already exposed through MC layer classes

(MCSubtargetInfo, MCInstrInfo, etc.), please add it to the /tools/llvm-mca/View/ directory. However,

if your new View is target specific AND requires unexposed backend symbols or functionality, you can

define it in the /lib/Target/<TargetName>/MCA/ directory.

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

To enable this target specific View, you will have to use this target’s CustomBehaviour class to

override the CustomBehaviour::getViews() methods. There are 3 variations of these methods based on

where you want your View to appear in the output: getStartViews(), getPostInstrInfoViews(), and

getEndViews(). These methods returns a vector of Views so you will want to return a vector containing

all of the target specific Views for the target in question.

Because these target specific (and backend dependent) Views require the

CustomBehaviour::getViews() variants, these Views will not be enabled if the -disable-cb flag is used.

Enabling these custom Views does not affect the non-custom (generic) Views. Continue to use the

usual command line arguments to enable / disable those Views.

AUTHOR
Maintained by the LLVM Team (https://llvm.org/).

COPYRIGHT
2003-2023, LLVM Project

LLVM-MCA(1) LLVM LLVM-MCA(1)

15 2023-12-15 LLVM-MCA(1)

