
NAME
llvmopenmp - LLVM/OpenMP 15.0.7

NOTE:
This document is a work in progress and most of the expected content is not yet available. While

you can expect changes, we always welcome feedback and additions. Please contact, e.g., through

openmp-dev@lists.llvm.org.

OpenMP impacts various parts of the LLVM project, from the frontends (Clang and Flang),

through middle-end optimizations, up to the multitude of available OpenMP runtimes.

A high-level overview of OpenMP in LLVM can be found here.

OPENMP IN LLVM --- DESIGN OVERVIEW
Resources

+o OpenMP Booth @ SC19: "OpenMP clang and flang Development" https://youtu.be/6yOa-hRi63M

LLVM/OpenMP Runtimes
There are four distinct types of LLVM/OpenMP runtimes: the host runtime LLVM/OpenMP Host

Runtime (libomp), the target offloading runtime LLVM/OpenMP Target Host Runtime (libomptarget),

the target offloading plugin LLVM/OpenMP Target Host Runtime Plugins (libomptarget.rtl.XXXX),

and finally the target device runtime LLVM/OpenMP Target Device Runtime

(libomptarget-ARCH-SUBARCH.bc).

For general information on debugging OpenMP target offloading applications, see

LIBOMPTARGET_INFO and Debugging

LLVM/OpenMP Host Runtime (libomp)
An early (2015) design document for the LLVM/OpenMP host runtime, aka. libomp.so, is available as

a pdf.

Environment Variables
OMP_CANCELLATION

Enables cancellation of the innermost enclosing region of the type specified. If set to true, the effects

of the cancel construct and of cancellation points are enabled and cancellation is activated. If set to

false, cancellation is disabled and the cancel construct and cancellation points are effectively ignored.

NOTE:
Internal barrier code will work differently depending on whether cancellation is enabled. Barrier

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

code should repeatedly check the global flag to figure out if cancellation has been triggered. If a

thread observes cancellation, it should leave the barrier prematurely with the return value 1 (and

may wake up other threads). Otherwise, it should leave the barrier with the return value 0.

Enables (true) or disables (false) cancellation of the innermost enclosing region of the type

specified.

Default: false

OMP_DISPLAY_ENV
Enables (true) or disables (false) the printing to stderr of the OpenMP version number and the values

associated with the OpenMP environment variables.

Possible values are: true, false, or verbose.

Default: false

OMP_DEFAULT_DEVICE
Sets the device that will be used in a target region. The OpenMP routine omp_set_default_device or a

device clause in a parallel pragma can override this variable. If no device with the specified device

number exists, the code is executed on the host. If this environment variable is not set, device number 0

is used.

OMP_DYNAMIC
Enables (true) or disables (false) the dynamic adjustment of the number of threads.

Default: false

OMP_MAX_ACTIVE_LEVELS
The maximum number of levels of parallel nesting for the program.

Default: 1

OMP_NESTED
WARNING:

Deprecated. Please use OMP_MAX_ACTIVE_LEVELS to control nested parallelism

Enables (true) or disables (false) nested parallelism.

Default: false

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

OMP_NUM_THREADS
Sets the maximum number of threads to use for OpenMP parallel regions if no other value is specified

in the application.

The value can be a single integer, in which case it specifies the number of threads for all parallel

regions. The value can also be a comma-separated list of integers, in which case each integer specifies

the number of threads for a parallel region at that particular nesting level.

The first position in the list represents the outer-most parallel nesting level, the second position

represents the next-inner parallel nesting level, and so on. At any level, the integer can be left out of

the list. If the first integer in a list is left out, it implies the normal default value for threads is used at

the outer-most level. If the integer is left out of any other level, the number of threads for that level is

inherited from the previous level.

Default: The number of processors visible to the operating system on which the program is executed.

Syntax: OMP_NUM_THREADS=value[,value]*
Example: OMP_NUM_THREADS=4,3

OMP_PLACES
Specifies an explicit ordered list of places, either as an abstract name describing a set of places or as an

explicit list of places described by non-negative numbers. An exclusion operator, !, can also be used to

exclude the number or place immediately following the operator.

For explicit lists, an ordered list of places is specified with each place represented as a set of

non-negative numbers. The non-negative numbers represent operating system logical processor

numbers and can be thought of as an OS affinity mask.

Individual places can be specified through two methods. Both the examples below represent the same

place.

+o An explicit list of comma-separated non-negatives numbers Example: {0,2,4,6}

+o An interval with notation <lower-bound>:<length>[:<stride>]. Example: {0:4:2}. When <stride> is

omitted, a unit stride is assumed. The interval notation represents this set of numbers:

<lower-bound>, <lower-bound> + <stride>, ..., <lower-bound> + (<length> - 1) * <stride>

A place list can also be specified using the same interval notation: {place}:<length>[:<stride>].
This represents the list of length <length> places determined by the following:

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

{place}, {place} + <stride>, ..., {place} + (<length>-1)*<stride>

Where given {place} and integer N, {place} + N = {place with every number offset by N}

Example: {0,3,6}:4:1 represents {0,3,6}, {1,4,7}, {2,5,8}, {3,6,9}

Examples of explicit lists: These all represent the same set of places

OMP_PLACES="{0,1,2,3},{4,5,6,7},{8,9,10,11},{12,13,14,15}"

OMP_PLACES="{0:4},{4:4},{8:4},{12:4}"

OMP_PLACES="{0:4}:4:4"

NOTE:
When specifying a place using a set of numbers, if any number cannot be mapped to a processor

on the target platform, then that number is ignored within the place, but the rest of the place is kept

intact. If all numbers within a place are invalid, then the entire place is removed from the place

list, but the rest of place list is kept intact.

The abstract names listed below are understood by the run-time environment:

+o threads: Each place corresponds to a single hardware thread.

+o cores: Each place corresponds to a single core (having one or more hardware threads).

+o sockets: Each place corresponds to a single socket (consisting of one or more cores).

+o numa_domains: Each place corresponds to a single NUMA domain (consisting of one or more

cores).

+o ll_caches: Each place corresponds to a last-level cache (consisting of one or more cores).

The abstract name may be appended by a positive number in parentheses to denote the length of

the place list to be created, that is abstract_name(num-places). If the optional number isn’t

specified, then the runtime will use all available resources of type abstract_name. When

requesting fewer places than available on the system, the first available resources as determined

by abstract_name are used. When requesting more places than available on the system, only the

available resources are used.

Examples of abstract names:

OMP_PLACES=threads

OMP_PLACES=threads(4)

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

OMP_PROC_BIND (Windows, Linux)
Sets the thread affinity policy to be used for parallel regions at the corresponding nested level. Enables

(true) or disables (false) the binding of threads to processor contexts. If enabled, this is the same as

specifying KMP_AFFINITY=scatter. If disabled, this is the same as specifying

KMP_AFFINITY=none.

Acceptable values: true, false, or a comma separated list, each element of which is one of the following

values: master, close, spread, or primary.

Default: false

WARNING:
master is deprecated. The semantics of master are the same as primary.

If set to false, the execution environment may move OpenMP threads between OpenMP places,

thread affinity is disabled, and proc_bind clauses on parallel constructs are ignored. Otherwise,

the execution environment should not move OpenMP threads between OpenMP places, thread

affinity is enabled, and the initial thread is bound to the first place in the OpenMP place list.

If set to primary, all threads are bound to the same place as the primary thread.

If set to close, threads are bound to successive places, near where the primary thread is bound.

If set to spread, the primary thread’s partition is subdivided and threads are bound to single

place successive sub-partitions.

Related environment variables: KMP_AFFINITY (overrides OMP_PROC_BIND).

OMP_SCHEDULE
Sets the run-time schedule type and an optional chunk size.

Default: static, no chunk size specified

Syntax: OMP_SCHEDULE="kind[,chunk_size]"

OMP_STACKSIZE
Sets the number of bytes to allocate for each OpenMP thread to use as the private stack for the thread.

Recommended size is 16M.

Use the optional suffixes to specify byte units: B (bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units. If you specify a value without a suffix, the byte unit

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

is assumed to be K (Kilobytes).

This variable does not affect the native operating system threads created by the user program, or the

thread executing the sequential part of an OpenMP program.

The kmp_{set,get}_stacksize_s() routines set/retrieve the value. The kmp_set_stacksize_s() routine

must be called from sequential part, before first parallel region is created. Otherwise, calling

kmp_set_stacksize_s() has no effect.

Default:

+o 32-bit architecture: 2M

+o 64-bit architecture: 4M
Related environment variables: KMP_STACKSIZE (overrides OMP_STACKSIZE).

Example: OMP_STACKSIZE=8M

OMP_THREAD_LIMIT
Limits the number of simultaneously-executing threads in an OpenMP program.

If this limit is reached and another native operating system thread encounters OpenMP API calls or

constructs, the program can abort with an error message. If this limit is reached when an OpenMP

parallel region begins, a one-time warning message might be generated indicating that the number of

threads in the team was reduced, but the program will continue.

The omp_get_thread_limit() routine returns the value of the limit.

Default: No enforced limit

Related environment variable: KMP_ALL_THREADS (overrides OMP_THREAD_LIMIT).

OMP_WAIT_POLICY
Decides whether threads spin (active) or yield (passive) while they are waiting.

OMP_WAIT_POLICY=active is an alias for KMP_LIBRARY=turnaround, and

OMP_WAIT_POLICY=passive is an alias for KMP_LIBRARY=throughput.
Default: passive

NOTE:
Although the default is passive, unless the user has explicitly set OMP_WAIT_POLICY, there is a

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

small period of active spinning determined by KMP_BLOCKTIME.

KMP_AFFINITY (Windows, Linux)
Enables run-time library to bind threads to physical processing units.

You must set this environment variable before the first parallel region, or certain API calls including

omp_get_max_threads(), omp_get_num_procs() and any affinity API calls.

Syntax: KMP_AFFINITY=[<modifier>,...]<type>[,<permute>][,<offset>]

modifiers are optional strings consisting of a keyword and possibly a specifier

+o respect (default) and norespect - determine whether to respect the original process affinity mask.

+o verbose and noverbose (default) - determine whether to display affinity information.

+o warnings (default) and nowarnings - determine whether to display warnings during affinity

detection.

+o reset and noreset (default) - determine whether to reset primary thread’s affinity after outermost

parallel region(s)

+o granularity=<specifier> - takes the following specifiers thread, core (default), tile, socket, die, group
(Windows only). The granularity describes the lowest topology levels that OpenMP threads are

allowed to float within a topology map. For example, if granularity=core, then the OpenMP threads

will be allowed to move between logical processors within a single core. If granularity=thread, then

the OpenMP threads will be restricted to a single logical processor.

+o proclist=[<proc_list>] - The proc_list is specified by

+-----------------+---------------------------------------+

|Value |Description |

+-----------------+---------------------------------------+

|<proc_list> |<proc_id> | { <id_list> |

|:= |} |

+-----------------+---------------------------------------+

|<id_list> |<proc_id> | |

|:= |<proc_id>,<id_list> |

+-----------------+---------------------------------------+

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Where each proc_id represents an operating system logical processor ID. For example,

proclist=[3,0,{1,2},{0,3}] with OMP_NUM_THREADS=4 would place thread 0 on OS logical

processor 3, thread 1 on OS logical processor 0, thread 2 on both OS logical processors 1 & 2,

and thread 3 on OS logical processors 0 & 3.

type is the thread affinity policy to choose. Valid choices are none, balanced, compact, scatter,

explicit, disabled

+o type none (default) - Does not bind OpenMP threads to particular thread contexts; however, if the

operating system supports affinity, the compiler still uses the OpenMP thread affinity interface to

determine machine topology. Specify KMP_AFFINITY=verbose,none to list a machine topology

map.

+o type compact - Specifying compact assigns the OpenMP thread <n>+1 to a free thread context as

close as possible to the thread context where the <n> OpenMP thread was placed. For example, in a

topology map, the nearer a node is to the root, the more significance the node has when sorting the

threads.

+o type scatter - Specifying scatter distributes the threads as evenly as possible across the entire system.

scatter is the opposite of compact; so the leaves of the node are most significant when sorting

through the machine topology map.

+o type balanced - Places threads on separate cores until all cores have at least one thread, similar to the

scatter type. However, when the runtime must use multiple hardware thread contexts on the same

core, the balanced type ensures that the OpenMP thread numbers are close to each other, which

scatter does not do. This affinity type is supported on the CPU only for single socket systems.

+o type explicit - Specifying explicit assigns OpenMP threads to a list of OS proc IDs that have been

explicitly specified by using the proclist modifier, which is required for this affinity type.

+o type disabled - Specifying disabled completely disables the thread affinity interfaces. This forces the

OpenMP run-time library to behave as if the affinity interface was not supported by the operating

system. This includes the low-level API interfaces such as kmp_set_affinity and kmp_get_affinity,

which have no effect and will return a nonzero error code.

For both compact and scatter, permute and offset are allowed; however, if you specify only one

integer, the runtime interprets the value as a permute specifier. Both permute and offset default
to 0.

The permute specifier controls which levels are most significant when sorting the machine

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

topology map. A value for permute forces the mappings to make the specified number of most

significant levels of the sort the least significant, and it inverts the order of significance. The

root node of the tree is not considered a separate level for the sort operations.

The offset specifier indicates the starting position for thread assignment.

Default: noverbose,warnings,respect,granularity=core,none
Related environment variable: OMP_PROC_BIND (KMP_AFFINITY takes precedence)

NOTE:
On Windows with multiple processor groups, the norespect affinity modifier is assumed when the

process affinity mask equals a single processor group (which is default on Windows). Otherwise,

the respect affinity modifier is used.

NOTE:
On Windows with multiple processor groups, if the granularity is too coarse, it will be set to

granularity=group. For example, if two processor groups exist across one socket, and

granularity=socket the runtime will shift the granularity down to group since that is the largest

granularity allowed by the OS.

KMP_ALL_THREADS
Limits the number of simultaneously-executing threads in an OpenMP program. If this limit is reached

and another native operating system thread encounters OpenMP API calls or constructs, then the

program may abort with an error message. If this limit is reached at the time an OpenMP parallel

region begins, a one-time warning message may be generated indicating that the number of threads in

the team was reduced, but the program will continue execution.

Default: No enforced limit.

Related environment variable: OMP_THREAD_LIMIT (KMP_ALL_THREADS takes precedence)

KMP_BLOCKTIME
Sets the time, in milliseconds, that a thread should wait, after completing the execution of a parallel

region, before sleeping.

Use the optional character suffixes: s (seconds), m (minutes), h (hours), or d (days) to specify the units.

Specify infinite for an unlimited wait time.

Default: 200 milliseconds

Related Environment Variable: KMP_LIBRARY
Example: KMP_BLOCKTIME=1s

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

KMP_CPUINFO_FILE
Specifies an alternate file name for a file containing the machine topology description. The file must be

in the same format as /proc/cpuinfo.

Default: None

KMP_DETERMINISTIC_REDUCTION
Enables (true) or disables (false) the use of a specific ordering of the reduction operations for

implementing the reduction clause for an OpenMP parallel region. This has the effect that, for a given

number of threads, in a given parallel region, for a given data set and reduction operation, a floating

point reduction done for an OpenMP reduction clause has a consistent floating point result from run to

run, since round-off errors are identical.

Default: false
Example: KMP_DETERMINISTIC_REDUCTION=true

KMP_DYNAMIC_MODE
Selects the method used to determine the number of threads to use for a parallel region when

OMP_DYNAMIC=true. Possible values: (load_balance | thread_limit), where,

+o load_balance: tries to avoid using more threads than available execution units on the machine;

+o thread_limit: tries to avoid using more threads than total execution units on the machine.

Default: load_balance (on all supported platforms)

KMP_HOT_TEAMS_MAX_LEVEL
Sets the maximum nested level to which teams of threads will be hot.

NOTE:
A hot team is a team of threads optimized for faster reuse by subsequent parallel regions. In a hot

team, threads are kept ready for execution of the next parallel region, in contrast to the cold team,

which is freed after each parallel region, with its threads going into a common pool of threads.

For values of 2 and above, nested parallelism should be enabled.

Default: 1

KMP_HOT_TEAMS_MODE
Specifies the run-time behavior when the number of threads in a hot team is reduced. Possible values:

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

+o 0 - Extra threads are freed and put into a common pool of threads.

+o 1 - Extra threads are kept in the team in reserve, for faster reuse in subsequent parallel regions.

Default: 0

KMP_HW_SUBSET
Specifies the subset of available hardware resources for the hardware topology hierarchy. The subset is

specified in terms of number of units per upper layer unit starting from top layer downwards. E.g. the

number of sockets (top layer units), cores per socket, and the threads per core, to use with an OpenMP

application, as an alternative to writing complicated explicit affinity settings or a limiting process

affinity mask. You can also specify an offset value to set which resources to use. When available, you

can specify attributes to select different subsets of resources.

An extended syntax is available when KMP_TOPOLOGY_METHOD=hwloc. Depending on what

resources are detected, you may be able to specify additional resources, such as NUMA domains and

groups of hardware resources that share certain cache levels.

Basic syntax: [num_units|*]ID[@offset][:attribute] [,[num_units|*]ID[@offset][:attribute]...]

Supported unit IDs are not case-insensitive.

S - socket

num_units specifies the requested number of sockets.

D - die

num_units specifies the requested number of dies per socket.

C - core

num_units specifies the requested number of cores per die - if any - otherwise, per socket.

T - thread

num_units specifies the requested number of HW threads per core.

NOTE:
num_units can be left out or explicitly specified as * instead of a positive integer meaning use all

specified resources at that level. e.g., 1s,*c means use 1 socket and all the cores on that socket

offset - (Optional) The number of units to skip.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

attribute - (Optional) An attribute differentiating resources at a particular level. The attributes

available to users are:

+o Core type - On Intel architectures, this can be intel_atom or intel_core

+o Core efficiency - This is specified as effnum where num is a number from 0 to the number of core

efficiencies detected in the machine topology minus one. E.g., eff0. The greater the efficiency

number the more performant the core. There may be more core efficiencies than core types and can

be viewed by setting KMP_AFFINITY=verbose

NOTE:
The hardware cache can be specified as a unit, e.g. L2 for L2 cache, or LL for last level cache.

Extended syntax when KMP_TOPOLOGY_METHOD=hwloc:

Additional IDs can be specified if detected. For example:

N - numa num_units specifies the requested number of NUMA nodes per upper layer unit, e.g.

per socket.

TI - tile num_units specifies the requested number of tiles to use per upper layer unit, e.g. per

NUMA node.

When any numa or tile units are specified in KMP_HW_SUBSET and the hwloc topology

method is available, the KMP_TOPOLOGY_METHOD will be automatically set to hwloc, so

there is no need to set it explicitly.

If you don’t specify one or more types of resource, such as socket or thread, all available

resources of that type are used.

The run-time library prints a warning, and the setting of KMP_HW_SUBSET is ignored if:

+o a resource is specified, but detection of that resource is not supported by the chosen topology

detection method and/or

+o a resource is specified twice. An exception to this condition is if attributes differentiate the resource.

+o attributes are used when not detected in the machine topology or conflict with each other.

This variable does not work if KMP_AFFINITY=disabled.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Default: If omitted, the default value is to use all the available hardware resources.

Examples:

+o 2s,4c,2t: Use the first 2 sockets (s0 and s1), the first 4 cores on each socket (c0 - c3), and 2 threads

per core.

+o 2s@2,4c@8,2t: Skip the first 2 sockets (s0 and s1) and use 2 sockets (s2-s3), skip the first 8 cores

(c0-c7) and use 4 cores on each socket (c8-c11), and use 2 threads per core.

+o 5C@1,3T: Use all available sockets, skip the first core and use 5 cores, and use 3 threads per core.

+o 1T: Use all cores on all sockets, 1 thread per core.

+o 1s, 1d, 1n, 1c, 1t: Use 1 socket, 1 die, 1 NUMA node, 1 core, 1 thread - use HW thread as a result.

+o 4c:intel_atom,5c:intel_core: Use all available sockets and use 4 Intel Atom(R) processor cores and 5

Intel(R) Core(TM) processor cores per socket.

+o 2c:eff0@1,3c:eff1: Use all available sockets, skip the first core with efficiency 0 and use the next 2

cores with efficiency 0 and 3 cores with efficiency 1 per socket.

+o 1s, 1c, 1t: Use 1 socket, 1 core, 1 thread. This may result in using single thread on a 3-layer topology

architecture, or multiple threads on 4-layer or 5-layer architecture. Result may even be different on

the same architecture, depending on KMP_TOPOLOGY_METHOD specified, as hwloc can often

detect more topology layers than the default method used by the OpenMP run-time library.

+o *c:eff1@3: Use all available sockets, skip the first three cores of efficiency 1, and then use the rest

of the available cores of efficiency 1.

To see the result of the setting, you can specify verbose modifier in KMP_AFFINITY
environment variable. The OpenMP run-time library will output to stderr the information about

the discovered hardware topology before and after the KMP_HW_SUBSET setting was applied.

KMP_INHERIT_FP_CONTROL
Enables (true) or disables (false) the copying of the floating-point control settings of the primary thread

to the floating-point control settings of the OpenMP worker threads at the start of each parallel region.

Default: true

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

KMP_LIBRARY
Selects the OpenMP run-time library execution mode. The values for this variable are serial,
turnaround, or throughput.
Default: throughput
Related environment variable: KMP_BLOCKTIME and OMP_WAIT_POLICY

KMP_SETTINGS
Enables (true) or disables (false) the printing of OpenMP run-time library environment variables during

program execution. Two lists of variables are printed: user-defined environment variables settings and

effective values of variables used by OpenMP run-time library.

Default: false

KMP_STACKSIZE
Sets the number of bytes to allocate for each OpenMP thread to use as its private stack.

Recommended size is 16M.

Use the optional suffixes to specify byte units: B (bytes), K (Kilobytes), M (Megabytes), G
(Gigabytes), or T (Terabytes) to specify the units. If you specify a value without a suffix, the byte unit

is assumed to be K (Kilobytes).

Related environment variable: KMP_STACKSIZE overrides GOMP_STACKSIZE, which overrides

OMP_STACKSIZE.

Default:

+o 32-bit architectures: 2M

+o 64-bit architectures: 4M

KMP_TOPOLOGY_METHOD
Forces OpenMP to use a particular machine topology modeling method.

Possible values are:

+o all - Let OpenMP choose which topology method is most appropriate based on the platform and

possibly other environment variable settings.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

+o cpuid_leaf31 (x86 only) - Decodes the APIC identifiers as specified by leaf 31 of the cpuid

instruction. The runtime will produce an error if the machine does not support leaf 31.

+o cpuid_leaf11 (x86 only) - Decodes the APIC identifiers as specified by leaf 11 of the cpuid

instruction. The runtime will produce an error if the machine does not support leaf 11.

+o cpuid_leaf4 (x86 only) - Decodes the APIC identifiers as specified in leaf 4 of the cpuid instruction.

The runtime will produce an error if the machine does not support leaf 4.

+o cpuinfo - If KMP_CPUINFO_FILE is not specified, forces OpenMP to parse /proc/cpuinfo to

determine the topology (Linux only). If KMP_CPUINFO_FILE is specified as described above,

uses it (Windows or Linux).

+o group - Models the machine as a 2-level map, with level 0 specifying the different processors in a

group, and level 1 specifying the different groups (Windows 64-bit only).

NOTE:
Support for group is now deprecated and will be removed in a future release. Use all instead.

+o flat - Models the machine as a flat (linear) list of processors.

+o hwloc - Models the machine as the Portable Hardware Locality (hwloc) library does. This model is

the most detailed and includes, but is not limited to: numa domains, packages, cores, hardware

threads, caches, and Windows processor groups. This method is only available if you have

configured libomp to use hwloc during CMake configuration.

Default: all

KMP_VERSION
Enables (true) or disables (false) the printing of OpenMP run-time library version information during

program execution.

Default: false

KMP_WARNINGS
Enables (true) or disables (false) displaying warnings from the OpenMP run-time library during

program execution.

Default: true

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

LLVM/OpenMP Target Host Runtime (libomptarget)
Environment Variables

libomptarget uses environment variables to control different features of the library at runtime. This

allows the user to obtain useful runtime information as well as enable or disable certain features. A full

list of supported environment variables is defined below.

+o LIBOMPTARGET_DEBUG=<Num>

+o LIBOMPTARGET_PROFILE=<Filename>

+o LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD=<Num>

+o LIBOMPTARGET_INFO=<Num>

+o LIBOMPTARGET_HEAP_SIZE=<Num>

+o LIBOMPTARGET_STACK_SIZE=<Num>

+o LIBOMPTARGET_SHARED_MEMORY_SIZE=<Num>

+o LIBOMPTARGET_MAP_FORCE_ATOMIC=[TRUE/FALSE] (default TRUE)

LIBOMPTARGET_DEBUG
LIBOMPTARGET_DEBUG controls whether or not debugging information will be displayed. This

feature is only availible if libomptarget was built with -DOMPTARGET_DEBUG. The debugging

output provided is intended for use by libomptarget developers. More user-friendly output is presented

when using LIBOMPTARGET_INFO.

LIBOMPTARGET_PROFILE
LIBOMPTARGET_PROFILE allows libomptarget to generate time profile output similar to Clang’s

-ftime-trace option. This generates a JSON file based on Chrome Tracing that can be viewed with

chrome://tracing or the Speedscope App. Building this feature depends on the LLVM Support Library

for time trace output. Using this library is enabled by default when building using the CMake option

OPENMP_ENABLE_LIBOMPTARGET_PROFILING. The output will be saved to the filename

specified by the environment variable. For multi-threaded applications, profiling in libomp is also

needed. Setting the CMake option OPENMP_ENABLE_LIBOMP_PROFILING=ON to enable the

feature. Note that this will turn libomp into a C++ library.

LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD
LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD sets the threshold size for which the

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

libomptarget memory manager will handle the allocation. Any allocations larger than this threshold

will not use the memory manager and be freed after the device kernel exits. The default threshold value

is 8KB. If LIBOMPTARGET_MEMORY_MANAGER_THRESHOLD is set to 0 the memory

manager will be completely disabled.

LIBOMPTARGET_INFO
LIBOMPTARGET_INFO allows the user to request different types of runtime information from

libomptarget. LIBOMPTARGET_INFO uses a 32-bit field to enable or disable different types of

information. This includes information about data-mappings and kernel execution. It is recommended

to build your application with debugging information enabled, this will enable filenames and variable

declarations in the information messages. OpenMP Debugging information is enabled at any level of

debugging so a full debug runtime is not required. For minimal debugging information compile with

-gline-tables-only, or compile with -g for full debug information. A full list of flags supported by

LIBOMPTARGET_INFO is given below.

+o Print all data arguments upon entering an OpenMP device kernel: 0x01

+o Indicate when a mapped address already exists in the device mapping table: 0x02

+o Dump the contents of the device pointer map at kernel exit: 0x04

+o Indicate when an entry is changed in the device mapping table: 0x08

+o Print OpenMP kernel information from device plugins: 0x10

+o Indicate when data is copied to and from the device: 0x20

Any combination of these flags can be used by setting the appropriate bits. For example, to

enable printing all data active in an OpenMP target region along with CUDA information, run

the following bash command.

$ env LIBOMPTARGET_INFO=$((0x1 | 0x10)) ./your-application

Or, to enable every flag run with every bit set.

$ env LIBOMPTARGET_INFO=-1 ./your-application

For example, given a small application implementing the ZAXPY BLAS routine, Libomptarget
can provide useful information about data mappings and thread usages.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

#include <complex>

using complex = std::complex<double>;

void zaxpy(complex *X, complex *Y, complex D, std::size_t N) {

#pragma omp target teams distribute parallel for

for (std::size_t i = 0; i < N; ++i)

Y[i] = D * X[i] + Y[i];

}

int main() {

const std::size_t N = 1024;

complex X[N], Y[N], D;

#pragma omp target data map(to:X[0 : N]) map(tofrom:Y[0 : N])

zaxpy(X, Y, D, N);

}

Compiling this code targeting nvptx64 with all information enabled will provide the following

output from the runtime library.

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O3 -gline-tables-only zaxpy.cpp -o zaxpy

$ env LIBOMPTARGET_INFO=-1 ./zaxpy

Info: Entering OpenMP data region at zaxpy.cpp:14:1 with 2 arguments:

Info: to(X[0:N])[16384]

Info: tofrom(Y[0:N])[16384]

Info: Creating new map entry with HstPtrBegin=0x00007fff0d259a40,

TgtPtrBegin=0x00007fdba5800000, Size=16384, RefCount=1, Name=X[0:N]

Info: Copying data from host to device, HstPtr=0x00007fff0d259a40,

TgtPtr=0x00007fdba5800000, Size=16384, Name=X[0:N]

Info: Creating new map entry with HstPtrBegin=0x00007fff0d255a40,

TgtPtrBegin=0x00007fdba5804000, Size=16384, RefCount=1, Name=Y[0:N]

Info: Copying data from host to device, HstPtr=0x00007fff0d255a40,

TgtPtr=0x00007fdba5804000, Size=16384, Name=Y[0:N]

Info: OpenMP Host-Device pointer mappings after block at zaxpy.cpp:14:1:

Info: Host Ptr Target Ptr Size (B) RefCount Declaration

Info: 0x00007fff0d255a40 0x00007fdba5804000 16384 1 Y[0:N] at zaxpy.cpp:13:17

Info: 0x00007fff0d259a40 0x00007fdba5800000 16384 1 X[0:N] at zaxpy.cpp:13:11

Info: Entering OpenMP kernel at zaxpy.cpp:6:1 with 4 arguments:

Info: firstprivate(N)[8] (implicit)

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Info: use_address(Y)[0] (implicit)

Info: tofrom(D)[16] (implicit)

Info: use_address(X)[0] (implicit)

Info: Mapping exists (implicit) with HstPtrBegin=0x00007fff0d255a40,

TgtPtrBegin=0x00007fdba5804000, Size=0, RefCount=2 (incremented), Name=Y

Info: Creating new map entry with HstPtrBegin=0x00007fff0d2559f0,

TgtPtrBegin=0x00007fdba5808000, Size=16, RefCount=1, Name=D

Info: Copying data from host to device, HstPtr=0x00007fff0d2559f0,

TgtPtr=0x00007fdba5808000, Size=16, Name=D

Info: Mapping exists (implicit) with HstPtrBegin=0x00007fff0d259a40,

TgtPtrBegin=0x00007fdba5800000, Size=0, RefCount=2 (incremented), Name=X

Info: Mapping exists with HstPtrBegin=0x00007fff0d255a40,

TgtPtrBegin=0x00007fdba5804000, Size=0, RefCount=2 (update suppressed)

Info: Mapping exists with HstPtrBegin=0x00007fff0d2559f0,

TgtPtrBegin=0x00007fdba5808000, Size=16, RefCount=1 (update suppressed)

Info: Mapping exists with HstPtrBegin=0x00007fff0d259a40,

TgtPtrBegin=0x00007fdba5800000, Size=0, RefCount=2 (update suppressed)

Info: Launching kernel __omp_offloading_10305_c08c86__Z5zaxpyPSt7complexIdES1_S0_m_l6

with 8 blocks and 128 threads in SPMD mode

Info: Mapping exists with HstPtrBegin=0x00007fff0d259a40,

TgtPtrBegin=0x00007fdba5800000, Size=0, RefCount=1 (decremented)

Info: Mapping exists with HstPtrBegin=0x00007fff0d2559f0,

TgtPtrBegin=0x00007fdba5808000, Size=16, RefCount=1 (deferred final decrement)

Info: Copying data from device to host, TgtPtr=0x00007fdba5808000,

HstPtr=0x00007fff0d2559f0, Size=16, Name=D

Info: Mapping exists with HstPtrBegin=0x00007fff0d255a40,

TgtPtrBegin=0x00007fdba5804000, Size=0, RefCount=1 (decremented)

Info: Removing map entry with HstPtrBegin=0x00007fff0d2559f0,

TgtPtrBegin=0x00007fdba5808000, Size=16, Name=D

Info: OpenMP Host-Device pointer mappings after block at zaxpy.cpp:6:1:

Info: Host Ptr Target Ptr Size (B) RefCount Declaration

Info: 0x00007fff0d255a40 0x00007fdba5804000 16384 1 Y[0:N] at zaxpy.cpp:13:17

Info: 0x00007fff0d259a40 0x00007fdba5800000 16384 1 X[0:N] at zaxpy.cpp:13:11

Info: Exiting OpenMP data region at zaxpy.cpp:14:1 with 2 arguments:

Info: to(X[0:N])[16384]

Info: tofrom(Y[0:N])[16384]

Info: Mapping exists with HstPtrBegin=0x00007fff0d255a40,

TgtPtrBegin=0x00007fdba5804000, Size=16384, RefCount=1 (deferred final decrement)

Info: Copying data from device to host, TgtPtr=0x00007fdba5804000,

HstPtr=0x00007fff0d255a40, Size=16384, Name=Y[0:N]

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Info: Mapping exists with HstPtrBegin=0x00007fff0d259a40,

TgtPtrBegin=0x00007fdba5800000, Size=16384, RefCount=1 (deferred final decrement)

Info: Removing map entry with HstPtrBegin=0x00007fff0d255a40,

TgtPtrBegin=0x00007fdba5804000, Size=16384, Name=Y[0:N]

Info: Removing map entry with HstPtrBegin=0x00007fff0d259a40,

TgtPtrBegin=0x00007fdba5800000, Size=16384, Name=X[0:N]

From this information, we can see the OpenMP kernel being launched on the CUDA device

with enough threads and blocks for all 1024 iterations of the loop in simplified SPMD Mode.

The information from the OpenMP data region shows the two arrays X and Y being copied from

the host to the device. This creates an entry in the host-device mapping table associating the host

pointers to the newly created device data. The data mappings in the OpenMP device kernel

show the default mappings being used for all the variables used implicitly on the device.

Because X and Y are already mapped in the device’s table, no new entries are created.

Additionally, the default mapping shows that D will be copied back from the device once the

OpenMP device kernel region ends even though it isn’t written to. Finally, at the end of the

OpenMP data region the entries for X and Y are removed from the table.

The information level can be controlled at runtime using an internal libomptarget library call

__tgt_set_info_flag. This allows for different levels of information to be enabled or disabled for

certain regions of code. Using this requires declaring the function signature as an external

function so it can be linked with the runtime library.

extern "C" void __tgt_set_info_flag(uint32_t);

extern foo();

int main() {

__tgt_set_info_flag(0x10);

#pragma omp target

foo();

}

Errors:
libomptarget provides error messages when the program fails inside the OpenMP target region.

Common causes of failure could be an invalid pointer access, running out of device memory, or trying

to offload when the device is busy. If the application was built with debugging symbols the error

messages will additionally provide the source location of the OpenMP target region.

For example, consider the following code that implements a simple parallel reduction on the GPU. This

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

code has a bug that causes it to fail in the offloading region.

#include <cstdio>

double sum(double *A, std::size_t N) {

double sum = 0.0;

#pragma omp target teams distribute parallel for reduction(+:sum)

for (int i = 0; i < N; ++i)

sum += A[i];

return sum;

}

int main() {

const int N = 1024;

double A[N];

sum(A, N);

}

If this code is compiled and run, there will be an error message indicating what is going wrong.

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O3 -gline-tables-only sum.cpp -o sum

$./sum

CUDA error: an illegal memory access was encountered

Libomptarget error: Copying data from device failed.

Libomptarget error: Call to targetDataEnd failed, abort target.

Libomptarget error: Failed to process data after launching the kernel.

Libomptarget error: Consult https://openmp.llvm.org/design/Runtimes.html for debugging options.

sum.cpp:5:1: Libomptarget error 1: failure of target construct while offloading is mandatory

This shows that there is an illegal memory access occuring inside the OpenMP target region

once execution has moved to the CUDA device, suggesting a segmentation fault. This then

causes a chain reaction of failures in libomptarget. Another message suggests using the

LIBOMPTARGET_INFO environment variable as described in Environment Variables. If we

do this it will print the sate of the host-target pointer mappings at the time of failure.

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O3 -gline-tables-only sum.cpp -o sum

$ env LIBOMPTARGET_INFO=4 ./sum

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

info: OpenMP Host-Device pointer mappings after block at sum.cpp:5:1:

info: Host Ptr Target Ptr Size (B) RefCount Declaration

info: 0x00007ffc058280f8 0x00007f4186600000 8 1 sum at sum.cpp:4:10

This tells us that the only data mapped between the host and the device is the sum variable that

will be copied back from the device once the reduction has ended. There is no entry mapping

the host array A to the device. In this situation, the compiler cannot determine the size of the

array at compile time so it will simply assume that the pointer is mapped on the device already

by default. The solution is to add an explicit map clause in the target region.

double sum(double *A, std::size_t N) {

double sum = 0.0;

#pragma omp target teams distribute parallel for reduction(+:sum) map(to:A[0 : N])

for (int i = 0; i < N; ++i)

sum += A[i];

return sum;

}

LIBOMPTARGET_STACK_SIZE
This environment variable sets the stack size in bytes for the CUDA plugin. This can be used to

increase or decrease the standard amount of memory reserved for each thread’s stack.

LIBOMPTARGET_HEAP_SIZE
This environment variable sets the amount of memory in bytes that can be allocated using malloc and

free for the CUDA plugin. This is necessary for some applications that allocate too much memory

either through the user or globalization.

LIBOMPTARGET_SHARED_MEMORY_SIZE
This environment variable sets the amount of dynamic shared memory in bytes used by the kernel once

it is launched. A pointer to the dynamic memory buffer can be accessed using the

llvm_omp_target_dynamic_shared_alloc function. An example is shown in Dynamic Shared Memory.

OpenMP in LLVM --- Offloading Design
OpenMP Target Offloading --- SPMD Mode
OpenMP Target Offloading --- Generic Mode
LIBOMPTARGET_MAP_FORCE_ATOMIC

The OpenMP standard guarantees that map clauses are atomic. However, the this can have a drastic

performance impact. Users that do not require atomic map clauses can disable them to potentially

recover lost performance. As a consequence, users have to guarantee themselves that no two map

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

clauses will concurrently map the same memory. If the memory is already mapped and the map clauses

will only modify the reference counter from a non-zero count to another non-zero count, concurrent

map clauses are supported regardless of this option. To disable forced atomic map clauses use

"false"/"FALSE" as the value of the LIBOMPTARGET_MAP_FORCE_ATOMIC environment

variable. The default behavior of LLVM 14 is to force atomic maps clauses, prior versions of LLVM

did not.

LLVM/OpenMP Target Host Runtime Plugins (libomptarget.rtl.XXXX)
Remote Offloading Plugin:

The remote offloading plugin permits the execution of OpenMP target regions on devices in remote

hosts in addition to the devices connected to the local host. All target devices on the remote host will be

exposed to the application as if they were local devices, that is, the remote host CPU or its GPUs can

be offloaded to with the appropriate device number. If the server is running on the same host, each

device may be identified twice: once through the device plugins and once through the device plugins

that the server application has access to.

This plugin consists of libomptarget.rtl.rpc.so and openmp-offloading-server which should be running

on the (remote) host. The server application does not have to be running on a remote host, and can

instead be used on the same host in order to debug memory mapping during offloading. These are

implemented via gRPC/protobuf so these libraries are required to build and use this plugin. The server

must also have access to the necessary target-specific plugins in order to perform the offloading.

Due to the experimental nature of this plugin, the CMake variable

LIBOMPTARGET_ENABLE_EXPERIMENTAL_REMOTE_PLUGIN must be set in order to build

this plugin. For example, the rpc plugin is not designed to be thread-safe, the server cannot

concurrently handle offloading from multiple applications at once (it is synchronous) and will

terminate after a single execution. Note that openmp-offloading-server is unable to remote offload onto

a remote host itself and will error out if this is attempted.

Remote offloading is configured via environment variables at runtime of the OpenMP application:

+o LIBOMPTARGET_RPC_ADDRESS=<Address>:<Port>

+o LIBOMPTARGET_RPC_ALLOCATOR_MAX=<NumBytes>

+o LIBOMPTARGET_BLOCK_SIZE=<NumBytes>

+o LIBOMPTARGET_RPC_LATENCY=<Seconds>

LIBOMPTARGET_RPC_ADDRESS

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

The address and port at which the server is running. This needs to be set for the server and the

application, the default is 0.0.0.0:50051. A single OpenMP executable can offload onto multiple

remote hosts by setting this to comma-seperated values of the addresses.

LIBOMPTARGET_RPC_ALLOCATOR_MAX
After allocating this size, the protobuf allocator will clear. This can be set for both endpoints.

LIBOMPTARGET_BLOCK_SIZE
This is the maximum size of a single message while streaming data transfers between the two

endpoints and can be set for both endpoints.

LIBOMPTARGET_RPC_LATENCY
This is the maximum amount of time the client will wait for a response from the server.

LLVM/OpenMP Target Device Runtime (libomptarget-ARCH-SUBARCH.bc)
The target device runtime is an LLVM bitcode library that implements OpenMP runtime functions on

the target device. It is linked with the device code’s LLVM IR during compilation.

Dynamic Shared Memory
The target device runtime contains a pointer to the dynamic shared memory buffer. This pointer can be

obtained using the llvm_omp_target_dynamic_shared_alloc extension. If this function is called from

the host it will simply return a null pointer. In order to use this buffer the kernel must be launched with

an adequate amount of dynamic shared memory allocated. Currently this is done using the

LIBOMPTARGET_SHARED_MEMORY_SIZE environment variable. An example is given below.

void foo() {

int x;

#pragma omp target parallel map(from : x)

{

int *buf = llvm_omp_target_dynamic_shared_alloc();

#pragma omp barrier

if (omp_get_thread_num() == 0)

*buf = 1;

#pragma omp barrier

if (omp_get_thread_num() == 1)

x = *buf;

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 shared.c

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

$ env LIBOMPTARGET_SHARED_MEMORY_SIZE=256 ./shared

Debugging
The device runtime supports debugging in the runtime itself. This is configured at compile-time using

the flag -fopenmp-target-debug=<N> rather than using a separate debugging build. If debugging is not

enabled, the debugging paths will be considered trivially dead and removed by the compiler with zero

overhead. Debugging is enabled at runtime by running with the environment variable

LIBOMPTARGET_DEVICE_RTL_DEBUG=<N> set. The number set is a 32-bit field used to

selectively enable and disable different features. Currently, the following debugging features are

supported.

+o Enable debugging assertions in the device. 0x01

+o Enable OpenMP runtime function traces in the device. 0x2

+o Enable diagnosing common problems during offloading . 0x4

void copy(double *X, double *Y) {

#pragma omp target teams distribute parallel for

for (std::size_t i = 0; i < N; ++i)

Y[i] = X[i];

}

Compiling this code targeting nvptx64 with debugging enabled will provide the following

output from the device runtime library.

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -fopenmp-target-debug=3

$ env LIBOMPTARGET_DEVICE_RTL_DEBUG=3 ./zaxpy

Kernel.cpp:70: Thread 0 Entering int32_t __kmpc_target_init()

Parallelism.cpp:196: Thread 0 Entering int32_t __kmpc_global_thread_num()

Mapping.cpp:239: Thread 0 Entering uint32_t __kmpc_get_hardware_num_threads_in_block()

Workshare.cpp:616: Thread 0 Entering void __kmpc_distribute_static_init_4()

Parallelism.cpp:85: Thread 0 Entering void __kmpc_parallel_51()

Parallelism.cpp:69: Thread 0 Entering <OpenMP Outlined Function>

Workshare.cpp:575: Thread 0 Entering void __kmpc_for_static_init_4()

Workshare.cpp:660: Thread 0 Entering void __kmpc_distribute_static_fini()

Workshare.cpp:660: Thread 0 Entering void __kmpc_distribute_static_fini()

Kernel.cpp:103: Thread 0 Entering void __kmpc_target_deinit()

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

OpenACC support is under development for both Flang and Clang. For this purpose, LLVM’s

OpenMP runtimes are being extended to serve as OpenACC runtimes. In some cases, Clang

supports OpenMP extensions to make the additional functionality also available in OpenMP

applications.

OPENACC SUPPORT
OpenACC support is under development for both Flang and Clang. For this purpose, LLVM’s

OpenMP runtimes are being extended to serve as OpenACC runtimes.

OpenMP Extensions for OpenACC
OpenACC provides some functionality that OpenMP does not. In some cases, Clang supports

OpenMP extensions to provide similar functionality, taking advantage of the runtime implementation

already required for OpenACC. This section documents those extensions.

By default, Clang recognizes these extensions. The command-line option -fno-openmp-extensions can

be specified to disable all OpenMP extensions, including those described in this section.

Motivation
There are multiple benefits to exposing OpenACC functionality as LLVM OpenMP extensions:

+o OpenMP applications can take advantage of the additional functionality.

+o As LLVM’s implementation of these extensions matures, it can serve as a basis for including these

extensions in the OpenMP standard.

+o Source-to-source translation from certain OpenACC features to OpenMP is otherwise impossible.

+o Runtime tests can be written in terms of OpenMP instead of OpenACC or low-level runtime calls.

+o More generally, there is a clean separation of concerns between OpenACC and OpenMP

development in LLVM. That is, LLVM’s OpenMP developers can discuss, modify, and debug

LLVM’s extended OpenMP implementation and test suite without directly considering OpenACC’s

language and execution model, which are handled by LLVM’s OpenACC developers.

ompx_hold Map Type Modifier
Example

#pragma omp target data map(ompx_hold, tofrom: x) // holds onto mapping of x throughout region

{

foo(); // might have map(delete: x)

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

#pragma omp target map(present, alloc: x) // x is guaranteed to be present

printf("%d\n", x);

}

The ompx_hold map type modifier above specifies that the target data directive holds onto the

mapping for x throughout the associated region regardless of any target exit data directives

executed during the call to foo. Thus, the presence assertion for x at the enclosed target
construct cannot fail.

Behavior

+o Stated more generally, the ompx_hold map type modifier specifies that the associated data is not

unmapped until the end of the construct. As usual, the standard OpenMP reference count for the

data must also reach zero before the data is unmapped.

+o If ompx_hold is specified for the same data on lexically or dynamically enclosed constructs, there is

no additional effect as the data mapping is already held throughout their regions.

+o The ompx_hold map type modifier is permitted to appear only on target constructs (and associated

combined constructs) and target data constructs. It is not permitted to appear on target enter data or

target exit data directives because there is no associated statement, so it is not meaningful to hold

onto a mapping until the end of the directive.

+o The runtime reports an error if omp_target_disassociate_ptr is called for a mapping for which the

ompx_hold map type modifier is in effect.

+o Like the present map type modifier, the ompx_hold map type modifier applies to an entire struct if

it’s specified for any member of that struct even if other map clauses on the same directive specify

other members without the ompx_hold map type modifier.

+o ompx_hold support is not yet provided for defaultmap.

Implementation

+o LLVM uses the term dynamic reference count for the standard OpenMP reference count for

host/device data mappings.

+o The ompx_hold map type modifier selects an alternate reference count, called the hold reference

count.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

+o A mapping is removed only once both its reference counts reach zero.

+o Because ompx_hold can appear only constructs, increments and decrements of the hold reference

count are guaranteed to be balanced, so it is impossible to decrement it below zero.

+o The dynamic reference count is used wherever ompx_hold is not specified (and possibly cannot be

specified). Decrementing the dynamic reference count has no effect if it is already zero.

+o The runtime determines that the ompx_hold map type modifier is in effect (see Behavior above)

when the hold reference count is greater than zero.

Relationship with OpenACC
OpenACC specifies two reference counts for tracking host/device data mappings. Which reference

count is used to implement an OpenACC directive is determined by the nature of that directive, either

dynamic or structured:

+o The dynamic reference count is always used for enter data and exit data directives and corresponding

OpenACC routines.

+o The structured reference count is always used for data and compute constructs, which are similar to

OpenMP’s target data and target constructs.

Contrast with OpenMP, where the dynamic reference count is always used unless the

application developer specifies an alternate behavior via our map type modifier extension. We

chose the name hold for that map type modifier because, as demonstrated in the above example,

hold concisely identifies the desired behavior from the application developer’s perspective

without referencing the implementation of that behavior.

The hold reference count is otherwise modeled after OpenACC’s structured reference count.

For example, calling acc_unmap_data, which is similar to omp_target_disassociate_ptr, is an

error when the structured reference count is not zero.

While Flang and Clang obviously must implement the syntax and semantics for selecting

OpenACC reference counts differently than for selecting OpenMP reference counts, the

implementation is the same at the runtime level. That is, OpenACC’s dynamic reference count

is OpenMP’s dynamic reference count, and OpenACC’s structured reference count is our

OpenMP hold reference count extension.

atomic Strictly Nested Within teams
Example

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

OpenMP 5.2, sec. 10.2 "teams Construct", p. 232, L9-12 restricts what regions can be strictly nested

within a teams region. As an extension, Clang relaxes that restriction in the case of the atomic
construct so that, for example, the following case is permitted:

#pragma omp target teams map(tofrom:x)

#pragma omp atomic update

x++;

Relationship with OpenACC
This extension is important when translating OpenACC to OpenMP because OpenACC does not have

the same restriction for its corresponding constructs. For example, the following is conforming

OpenACC:

#pragma acc parallel copy(x)

#pragma acc atomic update

x++;

LLVM, since version 11 (12 Oct 2020), has an OpenMP-Aware optimization pass as well as the

ability to perform "scalar optimizations" across OpenMP region boundaries.

In-depth discussion of the topic can be found here.

OPENMP OPTIMIZATIONS IN LLVM
LLVM, since version 11 (12 Oct 2020), has an OpenMP-Aware optimization pass as well as the ability

to perform "scalar optimizations" across OpenMP region boundaries.

OpenMP-Aware Optimizations
LLVM, since version 11 (12 Oct 2020), supports an OpenMP-Aware optimization pass. This

optimization pass will attempt to optimize the module with OpenMP-specific domain-knowledge. This

pass is enabled by default at high optimization levels (O2 / O3) if compiling with OpenMP support

enabled.

OpenMPOpt

+o OpenMP Runtime Call Deduplication

+o Globalization

OpenMPOpt contains several OpenMP-Aware optimizations. This pass is run early on the entire

Module, and later on the entire call graph. Most optimizations done by OpenMPOpt support

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

remarks. Optimization remarks can be enabled by compiling with the following flags.

$ clang -Rpass=openmp-opt -Rpass-missed=openmp-opt -Rpass-analysis=openmp-opt

OpenMP Runtime Call Deduplication
The OpenMP runtime library contains several functions used to implement features of the OpenMP

standard. Several of the runtime calls are constant within a parallel region. A common optimization is

to replace invariant code with a single reference, but in this case the compiler will only see an opaque

call into the runtime library. To get around this, OpenMPOpt maintains a list of OpenMP runtime

functions that are constant and will manually deduplicate them.

Globalization
The OpenMP standard requires that data can be shared between different threads. This requirement

poses a unique challenge when offloading to GPU accelerators. Data cannot be shared between the

threads in a GPU by default, in order to do this it must either be placed in global or shared memory.

This needs to be done every time a variable may potentially be shared in order to create correct

OpenMP programs. Unfortunately, this has significant performance implications and is not needed in

the majority of cases. For example, when Clang is generating code for this offloading region, it will see

that the variable x escapes and is potentially shared. This will require globalizing the variable, which

means it cannot reside in the registers on the device.

void use(void *) { }

void foo() {

int x;

use(&x);

}

int main() {

#pragma omp target parallel

foo();

}

In many cases, this transformation is not actually necessary but still carries a significant

performance penalty. Because of this, OpenMPOpt can perform and inter-procedural

optimization and scan each known usage of the globalized variable and determine if it is

potentially captured and shared by another thread. If it is not actually captured, it can safely be

moved back to fast register memory.

Another case is memory that is intentionally shared between the threads, but is shared from one

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

thread to all the others. Such variables can be moved to shared memory when compiled without

needing to go through the runtime library. This allows for users to confidently declare shared

memory on the device without needing to use custom OpenMP allocators or rely on the runtime.

static void share(void *);

static void foo() {

int x[64];

#pragma omp parallel

share(x);

}

int main() {

#pragma omp target

foo();

}

These optimizations can have very large performance implications. Both of these optimizations

rely heavily on inter-procedural analysis. Because of this, offloading applications should ideally

be contained in a single translation unit and functions should not be externally visible unless

needed. OpenMPOpt will inform the user if any globalization calls remain if remarks are

enabled. This should be treated as a defect in the program.

Resources

+o 2021 OpenMP Webinar: "A Compiler’s View of OpenMP" https://youtu.be/eIMpgez61r4

+o 2020 LLVM Developers’ Meeting: "(OpenMP) Parallelism-Aware Optimizations"

https://youtu.be/gtxWkeLCxmU

+o 2019 EuroLLVM Developers’ Meeting: "Compiler Optimizations for (OpenMP) Target Offloading

to GPUs" https://youtu.be/3AbS82C3X30

OpenMP-Unaware Optimizations
Resources

+o 2018 LLVM Developers’ Meeting: "Optimizing Indirections, using abstractions without remorse"

https://youtu.be/zfiHaPaoQPc

+o 2019 LLVM Developers’ Meeting: "The Attributor: A Versatile Inter-procedural Fixpoint Iteration

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Framework" https://youtu.be/CzWkc_JcfS0

LLVM has an elaborate ecosystem around analysis and optimization remarks issues during

compilation. The remarks can be enabled from the clang frontend [1] [2] in various formats [3]

[4] to be used by tools, i.a., opt-viewer or llvm-opt-report (dated).

The OpenMP optimizations in LLVM have been developed with remark support as a priority.

For a list of OpenMP specific remarks and more information on them, please refer to OpenMP

Optimization Remarks.

+o [1] https://clang.llvm.org/docs/UsersManual.html#options-to-emit-optimization-reports

+o [2] https://clang.llvm.org/docs/ClangCommandLineReference.html#diagnostic-flags

+o [3]

https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang-foptimization-record-file

+o [4]

https://clang.llvm.org/docs/ClangCommandLineReference.html#cmdoption-clang1-fsave-optimization-record

OPENMP OPTIMIZATION REMARKS
The OpenMP-Aware optimization pass is able to generate compiler remarks for performed and missed

optimisations. To emit them, pass these options to the Clang invocation: -Rpass=openmp-opt
-Rpass-analysis=openmp-opt -Rpass-missed=openmp-opt. For more information and features of the

remark system, consult the clang documentation:

+o Clang options to emit optimization reports

+o Clang diagnostic and remark flags

+o The -foptimization-record-file flag and the -fsave-optimization-record flag

OpenMP Remarks
Potentially unknown OpenMP target region caller [OMP100]

A function remark that indicates the function, when compiled for a GPU, is potentially called from

outside the translation unit. Note that a remark is only issued if we tried to perform an optimization

which would require us to know all callers on the GPU.

To facilitate OpenMP semantics on GPUs we provide a runtime mechanism through which the code

that makes up the body of a parallel region is shared with the threads in the team. Generally we use the

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

address of the outlined parallel region to identify the code that needs to be executed. If we know all

target regions that reach the parallel region we can avoid this function pointer passing scheme and

often improve the register usage on the GPU. However, If a parallel region on the GPU is in a function

with external linkage we may not know all callers statically. If there are outside callers within target

regions, this remark is to be ignored. If there are no such callers, users can modify the linkage and

thereby help optimization with a static or __attribute__((internal)) function annotation. If changing the

linkage is impossible, e.g., because there are outside callers on the host, one can split the function into

an external visible interface which is not compiled for the target and an internal implementation which

is compiled for the target and should be called from within the target region.

Parallel region is used in unknown / unexpected ways. Will not attempt to rewrite the state machine.
[OMP101]
An analysis remark that indicates that a parallel region has unknown calls.

Parallel region is not called from a unique kernel. Will not attempt to rewrite the state machine.
[OMP102]
This analysis remark indicates that a given parallel region is called by multiple kernels. This prevents

the compiler from optimizing it to a single kernel and rewrite the state machine.

Moving globalized variable to the stack. [OMP110]
This optimization remark indicates that a globalized variable was moved back to thread-local stack

memory on the device. This occurs when the optimization pass can determine that a globalized variable

cannot possibly be shared between threads and globalization was ultimately unnecessary. Using stack

memory is the best-case scenario for data globalization as the variable can now be stored in fast register

files on the device. This optimization requires full visibility of each variable.

Globalization typically occurs when a pointer to a thread-local variable escapes the current scope. The

compiler needs to be pessimistic and assume that the pointer could be shared between multiple threads

according to the OpenMP standard. This is expensive on target offloading devices that do not allow

threads to share data by default. Instead, this data must be moved to memory that can be shared, such

as shared or global memory. This optimization moves the data back from shared or global memory to

thread-local stack memory if the data is not actually shared between the threads.

Examples
A trivial example of globalization occurring can be seen with this example. The compiler sees that a

pointer to the thread-local variable x escapes the current scope and must globalize it even though it is

not actually necessary. Fortunately, this optimization can undo this by looking at its usage.

void use(int *x) { }

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

void foo() {

int x;

use(&x);

}

int main() {

#pragma omp target parallel

foo();

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 omp110.cpp -O1 -Rpass=openmp-opt

omp110.cpp:6:7: remark: Moving globalized variable to the stack. [OMP110]

int x;

^

A less trivial example can be seen using C++’s complex numbers. In this case the overloaded

arithmetic operators cause pointers to the complex numbers to escape the current scope, but they

can again be removed once the usage is visible.

#include <complex>

using complex = std::complex<double>;

void zaxpy(complex *X, complex *Y, const complex D, int N) {

#pragma omp target teams distribute parallel for firstprivate(D)

for (int i = 0; i < N; ++i)

Y[i] = D * X[i] + Y[i];

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 omp110.cpp -O1 -Rpass=openmp-opt

In file included from omp110.cpp:1:

In file included from /usr/bin/clang/lib/clang/13.0.0/include/openmp_wrappers/complex:27:

/usr/include/c++/8/complex:328:20: remark: Moving globalized variable to the stack. [OMP110]

complex<_Tp> __r = __x;

^

/usr/include/c++/8/complex:388:20: remark: Moving globalized variable to the stack. [OMP110]

complex<_Tp> __r = __x;

^

Diagnostic Scope

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

OpenMP target offloading optimization remark.

Replaced globalized variable with X bytes of shared memory. [OMP111]
This optimization occurs when a globalized variable’s data is shared between multiple threads, but

requires a constant amount of memory that can be determined at compile time. This is the case when

only a single thread creates the memory and is then shared between every thread. The memory can then

be pushed to a static buffer of shared memory on the device. This optimization allows users to declare

shared memory on the device without using OpenMP’s custom allocators.

Globalization occurs when a pointer to a thread-local variable escapes the current scope. If a single

thread is known to be responsible for creating and sharing the data it can instead be mapped directly to

the device’s shared memory. Checking if only a single thread can execute an instruction requires that

the parent functions have internal linkage. Otherwise, an external caller could invalidate this analysis

but having multiple threads call that function. The optimization pass will make internal copies of each

function to use for this reason, but it is still recommended to mark them as internal using keywords like

static whenever possible.

Example
This optimization should apply to any variable declared in an OpenMP target region that is then shared

with every thread in a parallel region. This allows the user to declare shared memory without using

custom allocators. A simple stencil calculation shows how this can be used.

void stencil(int M, int N, double *X, double *Y) {

#pragma omp target teams distribute collapse(2) \

map(to : X [0:M * N]) map(tofrom : Y [0:M * N])

for (int i0 = 0; i0 < M; i0 += MC) {

for (int j0 = 0; j0 < N; j0 += NC) {

double sX[MC][NC];

#pragma omp parallel for collapse(2) shared(sX) default(firstprivate)

for (int i1 = 0; i1 < MC; ++i1)

for (int j1 = 0; j1 < NC; ++j1)

sX[i1][j1] = X[(i0 + i1) * N + (j0 + j1)];

#pragma omp parallel for collapse(2) shared(sX) default(firstprivate)

for (int i1 = 1; i1 < MC - 1; ++i1)

for (int j1 = 1; j1 < NC - 1; ++j1)

Y[(i0 + i1) * N + j0 * j1] = (sX[i1 + 1][j1] + sX[i1 - 1][j1] +

sX[i1][j1 + 1] + sX[i1][j1 - 1] +

-4.0 * sX[i1][j1]) / (dX * dX);

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

}

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O1 -Rpass=openmp-opt -fopenmp-version=51 omp111.cpp

omp111.cpp:10:14: remark: Replaced globalized variable with 8192 bytes of shared memory. [OMP111]

double sX[MC][NC];

^

The default mapping for variables captured in an OpenMP parallel region is shared. This means

taking a pointer to the object which will ultimately result in globalization that will be mapped to

shared memory when it could have been placed in registers. To avoid this, make sure each

variable that can be copied into the region is marked firstprivate either explicitly or using the

OpenMP 5.1 feature default(firstprivate).

Diagnostic Scope
OpenMP target offloading optimization remark.

Found thread data sharing on the GPU. Expect degraded performance due to data globalization.
[OMP112]
This missed remark indicates that a globalized value was found on the target device that was not either

replaced with stack memory by OMP110 or shared memory by OMP111. Globalization that has not

been removed will need to be handled by the runtime and will significantly impact performance.

The OpenMP standard requires that threads are able to share their data between each-other. However,

this is not true by default when offloading to a target device such as a GPU. Threads on a GPU cannot

shared their data unless it is first placed in global or shared memory. In order to create standards

complaint code, the Clang compiler will globalize any variables that could potentially be shared

between the threads. In the majority of cases, globalized variables can either be returns to a thread-local

stack, or pushed to shared memory. However, in a few cases it is necessary and will cause a

performance penalty.

Examples
This example shows legitimate data sharing on the device. It is a convoluted example, but is

completely complaint with the OpenMP standard. If globalization was not added this would result in

different results on different target devices.

#include <omp.h>

#include <cstdio>

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

#pragma omp declare target

static int *p;

#pragma omp end declare target

void foo() {

int x = omp_get_thread_num();

if (omp_get_thread_num() == 1)

p = &x;

#pragma omp barrier

printf ("Thread %d: %d\n", omp_get_thread_num(), *p);

}

int main() {

#pragma omp target parallel

foo();

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O1 -Rpass-missed=openmp-opt omp112.cpp

omp112.cpp:9:7: remark: Found thread data sharing on the GPU. Expect degraded performance

due to data globalization. [OMP112] [-Rpass-missed=openmp-opt]

int x = omp_get_thread_num();

^

A less convoluted example globalization that cannot be removed occurs when calling functions

that aren’t visible from the current translation unit.

extern void use(int *x);

void foo() {

int x;

use(&x);

}

int main() {

#pragma omp target parallel

foo();

}

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O1 -Rpass-missed=openmp-opt omp112.cpp

omp112.cpp:4:7: remark: Found thread data sharing on the GPU. Expect degraded performance

due to data globalization. [OMP112] [-Rpass-missed=openmp-opt]

int x;

^

Diagnostic Scope
OpenMP target offloading missed remark.

Could not move globalized variable to the stack. Variable is potentially captured in call. Mark parameter
as __attribute__((noescape)) to override. [OMP113]
This missed remark indicates that a globalized value could not be moved to the stack because it is

potentially captured by a call to a function we cannot analyze. In order for a globalized variable to be

moved to the stack, copies to its pointer cannot be stored. Otherwise it is considered captured and could

potentially be shared between the threads. This can be overridden using a parameter level attribute as

suggested in the remark text.

Globalization will occur when a pointer to a thread-local variable escapes the current scope. In most

cases it can be determined that the variable cannot be shared if a copy of its pointer is never made.

However, this remark indicates a copy of the pointer is present or that sharing is possible because it is

used outside the current translation unit.

Examples
If a pointer to a thread-local variable is passed to a function not visible in the current translation unit we

need to assume a copy is made of it that can be shared between the threads. This prevents OMP110

from triggering, which will result in a performance penalty when executing on the target device.

extern void use(int *x);

void foo() {

int x;

use(&x);

}

int main() {

#pragma omp target parallel

foo();

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass-missed=openmp-opt omp113.cpp

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

missed.cpp:4:7: remark: Could not move globalized variable to the stack. Variable is

potentially captured in call. Mark parameter as ‘__attribute__((noescape))‘ to

override. [OMP113]

int x;

^

As the remark suggests, this behaviour can be overridden using the noescape attribute. This tells

the compiler that no reference to the object the pointer points to that is derived from the

parameter value will survive after the function returns. The user is responsible for verifying that

this assertion is correct.

extern void use(__attribute__((noescape)) int *x);

void foo() {

int x;

use(&x);

}

int main() {

#pragma omp target parallel

foo();

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass=openmp-opt omp113.cpp

missed.cpp:4:7: remark: Moving globalized variable to the stack. [OMP110]

int x;

^

Diagnostic Scope
OpenMP target offloading missed remark.

Transformed generic-mode kernel to SPMD-mode [OMP120]
This optimization remark indicates that the execution strategy for the OpenMP target offloading kernel

was changed. Generic-mode kernels are executed by a single thread that schedules parallel worker

threads using a state machine. This code transformation can move a kernel that was initially generated

in generic mode to SPMD-mode where all threads are active at the same time with no state machine.

This execution strategy is closer to how the threads are actually executed on a GPU target. This is only

possible if the instructions previously executed by a single thread have no side-effects or can be

guarded. If the instructions have no side-effects they are simply recomputed by each thread.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Generic-mode is often considerably slower than SPMD-mode because of the extra overhead required to

separately schedule worker threads and pass data between them.This optimization allows users to use

generic-mode semantics while achieving the performance of SPMD-mode. This can be helpful when

defining shared memory between the threads using OMP111.

Examples
Normally, any kernel that contains split OpenMP target and parallel regions will be executed in

generic-mode. Sometimes it is easier to use generic-mode semantics to define shared memory, or more

tightly control the distribution of the threads. This shows a naive matrix-matrix multiplication that

contains code that will need to be guarded.

void matmul(int M, int N, int K, double *A, double *B, double *C) {

#pragma omp target teams distribute collapse(2) \

map(to:A[0: M*K]) map(to:B[0: K*N]) map(tofrom:C[0 : M*N])

for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {

double sum = 0.0;

#pragma omp parallel for reduction(+:sum) default(firstprivate)

for (int k = 0; k < K; k++)

sum += A[i*K + k] * B[k*N + j];

C[i*N + j] = sum;

}

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -fopenmp-version=51 -O2 -Rpass=openmp-opt omp120.cpp

omp120.cpp:6:14: remark: Replaced globalized variable with 8 bytes of shared memory. [OMP111]

double sum = 0.0;

^

omp120.cpp:2:1: remark: Transformed generic-mode kernel to SPMD-mode. [OMP120]

#pragma omp target teams distribute collapse(2) \

^

This requires guarding the store to the shared variable sum and the store to the matrix C. This

can be thought of as generating the code below.

void matmul(int M, int N, int K, double *A, double *B, double *C) {

#pragma omp target teams distribute collapse(2) \

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

map(to:A[0: M*K]) map(to:B[0: K*N]) map(tofrom:C[0 : M*N])

for (int i = 0; i < M; i++) {

for (int j = 0; j < N; j++) {

double sum;

#pragma omp parallel default(firstprivate) shared(sum)

{

#pragma omp barrier

if (omp_get_thread_num() == 0)

sum = 0.0;

#pragma omp barrier

#pragma omp for reduction(+:sum)

for (int k = 0; k < K; k++)

sum += A[i*K + k] * B[k*N + j];

#pragma omp barrier

if (omp_get_thread_num() == 0)

C[i*N + j] = sum;

#pragma omp barrier

}

}

}

}

Diagnostic Scope
OpenMP target offloading optimization remark.

Value has potential side effects preventing SPMD-mode execution. Add
__attribute__((assume("ompx_spmd_amenable"))) to the called function to override. [OMP121]
This analysis remarks indicates that a potential side-effect that cannot be guarded prevents the target

region from executing in SPMD-mode. SPMD-mode requires that each thread is active inside the

region. Any instruction that cannot be either recomputed by each thread independently or guarded and

executed by a single thread prevents the region from executing in SPMD-mode.

This remark will attempt to print out the instructions preventing the region from being executed in

SPMD-mode. Calls to functions outside the current translation unit will prevent this transformation

from occurring as well, but can be overridden using an assumption stating that it contains no calls that

prevent SPMD execution.

Examples

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Calls to functions outside the current translation unit may contain instructions or operations that cannot

be executed in SPMD-mode.

extern int work();

void use(int x);

void foo() {

#pragma omp target teams

{

int x = work();

#pragma omp parallel

use(x);

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass-analysis=openmp-opt omp121.cpp

omp121.cpp:8:13: remark: Value has potential side effects preventing SPMD-mode

execution. Add ‘__attribute__((assume("ompx_spmd_amenable")))‘ to the called function

to override. [OMP121]

int x = work();

^

As the remark suggests, the problem is caused by the unknown call to the external function

work. This can be overridden by asserting that it does not contain any code that prevents

SPMD-mode execution.

__attribute__((assume("ompx_spmd_amenable"))) extern int work();

void use(int x);

void foo() {

#pragma omp target teams

{

int x = work();

#pragma omp parallel

use(x);

}

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass=openmp-opt omp121.cpp

omp121.cpp:6:1: remark: Transformed generic-mode kernel to SPMD-mode. [OMP120]

#pragma omp target teams

^

Diagnostic Scope
OpenMP target offloading analysis remark.

Removing unused state machine from generic-mode kernel. [OMP130]
This optimization remark indicates that an unused state machine was removed from a target region.

This occurs when there are no parallel regions inside of a target construct. Normally, a state machine is

required to schedule the threads inside of a parallel region. If there are no parallel regions, the state

machine is unnecessary because there is only a single thread active at any time.

Examples
This optimization should occur on any target region that does not contain any parallel work.

void copy(int N, double *X, double *Y) {

#pragma omp target teams distribute map(tofrom: X[0:N]) map(tofrom: Y[0:N])

for (int i = 0; i < N; ++i)

Y[i] = X[i];

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass=openmp-opt omp130.cpp

omp130.cpp:2:1: remark: Removing unused state machine from generic-mode kernel. [OMP130]

#pragma omp target teams distribute map(tofrom: X[0:N]) map(tofrom: Y[0:N])

^

Diagnostic Scope
OpenMP target offloading optimization remark.

Rewriting generic-mode kernel with a customized state machine. [OMP131]
This optimization remark indicates that a generic-mode kernel on the device was specialized for the

given target region. When offloading in generic-mode, a state machine is required to schedule the work

between the parallel worker threads. This optimization specializes the state machine in cases where

there is a known number of parallel regions inside the kernel. A much simpler state machine can be

used if it is known that there is no nested parallelism and the number of regions to schedule is a static

amount.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

Examples
This optimization should occur on any generic-mode kernel that has visibility on all parallel regions,

but cannot be moved to SPMD-mode and has no nested parallelism.

#pragma omp declare target

int TID;

#pragma omp end declare target

void foo() {

#pragma omp target

{

TID = omp_get_thread_num();

#pragma omp parallel

{

work();

}

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass=openmp-opt omp131.cpp

omp131.cpp:8:1: remark: Rewriting generic-mode kernel with a customized state machine. [OMP131]

#pragma omp target

^

Diagnostic Scope
OpenMP target offloading optimization remark.

Generic-mode kernel is executed with a customized state machine that requires a fallback. [OMP132]
This analysis remark indicates that a state machine rewrite occurred, but could not be done fully

because of unknown calls to functions that may contain parallel regions. The state machine handles

scheduling work between parallel worker threads on the device when operating in generic-mode. If

there are unknown parallel regions it prevents the optimization from fully rewriting the state machine.

Examples
This will occur for any generic-mode kernel that may contain unknown parallel regions. This is

typically coupled with the OMP133 remark.

extern void setup();

void foo() {

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

#pragma omp target

{

setup();

#pragma omp parallel

{

work();

}

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass-analysis=openmp-opt omp132.cpp

omp133.cpp:4:1: remark: Generic-mode kernel is executed with a customized state machine

that requires a fallback. [OMP132]

#pragma omp target

^

Diagnostic Scope
OpenMP target offloading analysis remark.

Call may contain unknown parallel regions. Use __attribute__((assume("omp_no_parallelism"))) to
override. [OMP133]
This analysis remark identifies calls that prevented OMP131 from providing the generic-mode kernel

with a fully specialized state machine. This remark will identify each call that may contain unknown

parallel regions that caused the kernel to require a fallback.

Examples
This will occur for any generic-mode kernel that may contain unknown parallel regions. This is

typically coupled with the OMP132 remark.

extern void setup();

void foo() {

#pragma omp target

{

setup();

#pragma omp parallel

{

work();

}

}

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass-analysis=openmp-opt omp133.cpp

omp133.cpp:6:5: remark: Call may contain unknown parallel regions. Use

‘__attribute__((assume("omp_no_parallelism")))‘ to override. [OMP133]

setup();

^

The remark suggests marking the function with the assumption that it contains no parallel

regions. If this is done then the kernel will be rewritten with a fully specialized state machine.

__attribute__((assume("omp_no_parallelism"))) extern void setup();

void foo() {

#pragma omp target

{

setup();

#pragma omp parallel

{

work();

}

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O2 -Rpass=openmp-opt omp133.cpp

omp133.cpp:4:1: remark: Rewriting generic-mode kernel with a customized state machine. [OMP131]

#pragma omp target

^

Diagnostic Scope
OpenMP target offloading analysis remark.

Could not internalize function. Some optimizations may not be possible. [OMP140]
This analysis remark indicates that function internalization failed for the given function. Internalization

occurs when a call to a function that ordinarily has external visibility is replaced with a call to a copy of

that function with only internal visibility. This allows the compiler to make strong static assertions

about the context a function is called in. Without internalization this analysis would always be

invalidated by the possibility of someone calling the function in a different context outside of the

current translation unit. This is necessary for optimizations like OMP111 and OMP120. If a function

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

failed to be internalized it most likely has linkage that cannot be copied. Internalization is currently

only enabled by default for OpenMP target offloading.

Examples
This will occur for any function declaration that has incompatible linkage.

__attribute__((weak)) void setup();

void foo() {

#pragma omp target

{

setup();

#pragma omp parallel

{

work();

}

}

}

$ clang++ -fopenmp -fopenmp-targets=nvptx64 -O1 -Rpass-analysis=openmp-opt omp140.cpp

omp140.cpp:1:1: remark: Could not internalize function. Some optimizations may not

be possible. [OMP140]

__attribute__((weak)) void setup() {

^

Diagnostic Scope
OpenMP analysis remark.

Parallel region merged with parallel region at <location>. [OMP150]
This optimization remark indicates that a parallel region was merged with others into a single parallel

region. Parallel region merging fuses consecutive parallel regions to reduce the team activation

overhead of forking and increases the scope of possible OpenMP-specific optimizations within merged

parallel regions. This optimization can also guard sequential code between two parallel regions if

applicable.

Example
This optimization should apply to any compatible and consecutive parallel regions. In this case the

sequential region between the parallel regions will be guarded so it is only executed by a single thread

in the new merged region.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

void foo() {

#pragma omp parallel

parallel_work();

sequential_work();

#pragma omp parallel

parallel_work();

}

$ clang++ -fopenmp -O2 -Rpass=openmp-opt -mllvm -openmp-opt-enable-merging omp150.cpp

omp150.cpp:2:1: remark: Parallel region merged with parallel region at merge.cpp:7:1. [OMP150]

#pragma omp parallel

^

Diagnostic Scope
OpenMP optimization remark.

Removing parallel region with no side-effects. [OMP160]
This optimization remark indicates that a parallel region was deleted because it was not found to have

any side-effects. This can occur if the region does not write any of its results to memory visible outside

the region. This optimization is necessary because the barrier between sequential and parallel code

typically prevents dead code elimination from completely removing the region. Otherwise there will

still be overhead to fork and merge the threads with no work done.

Example
This optimization occurs whenever a parallel region was not found to have any side-effects. This can

occur if the parallel region only reads memory or is simply empty.

void foo() {

#pragma omp parallel

{ }

#pragma omp parallel

{ int x = 1; }

}

}

$ clang++ -fopenmp -O2 -Rpass=openmp-opt omp160.cpp

omp160.cpp:4:1: remark: Removing parallel region with no side-effects. [OMP160] [-Rpass=openmp-opt]

#pragma omp parallel

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

^

delete.cpp:2:1: remark: Removing parallel region with no side-effects. [OMP160] [-Rpass=openmp-opt]

#pragma omp parallel

^

^

Diagnostic Scope
OpenMP optimization remark.

OpenMP runtime call <call> deduplicated. [OMP170]
This optimization remark indicates that a call to an OpenMP runtime call was replaced with the result

of an existing one. This occurs when the compiler knows that the result of a runtime call is immutable.

Removing duplicate calls is done by replacing all calls to that function with the result of the first call.

This cannot be done automatically by the compiler because the implementations of the OpenMP

runtime calls live in a separate library the compiler cannot see.

Example
This optimization will trigger for known OpenMP runtime calls whose return value will not change.

void foo(int N) {

double *A = malloc(N * omp_get_thread_limit());

double *B = malloc(N * omp_get_thread_limit());

#pragma omp parallel

work(&A[omp_get_thread_num() * N]);

#pragma omp parallel

work(&B[omp_get_thread_num() * N]);

}

$ clang -fopenmp -O2 -Rpass=openmp-opt omp170.c

ompi170.c:2:26: remark: OpenMP runtime call omp_get_thread_limit deduplicated. [OMP170]

double *A = malloc(N * omp_get_thread_limit());

^

Diagnostic Scope
OpenMP optimization remark.

Replacing OpenMP runtime call <call> with <value>.
This optimization remark indicates that analysis determined an OpenMP runtime calls can be replaced

with a constant value. This can occur when an OpenMP runtime call that queried some internal state

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

was found to always return a single value after analysis.

Example
This optimization will trigger for most target regions to simplify the runtime once certain constants are

known. This will trigger for internal runtime functions so it requires enabling verbose remarks with

-openmp-opt-verbose-remarks (prefixed with -mllvm for use with clang).

void foo() {

#pragma omp target parallel

{ }

}

$ clang test.c -fopenmp -fopenmp-targets=nvptx64 -O1 -Rpass=openmp-opt \

-mllvm -openmp-opt-verbose-remarks

remark: Replacing runtime call __kmpc_is_spmd_exec_mode with 1. [OMP180] [-Rpass=openmp-opt]

remark: Replacing runtime call __kmpc_is_spmd_exec_mode with 1. [OMP180] [-Rpass=openmp-opt]

remark: Replacing runtime call __kmpc_parallel_level with 1. [OMP180] [-Rpass=openmp-opt]

remark: Replacing runtime call __kmpc_parallel_level with 1. [OMP180] [-Rpass=openmp-opt]

Diagnostic Scope
OpenMP optimization remark.

Redundant barrier eliminated. (device only)
This optimization remark indicates that analysis determined an aligned barrier in the device code to be

redundant. This can occur when state updates that have been synchronized by the barrier were

eliminated too. See also "Co-Designing an OpenMP GPU Runtime and Optimizations for Near-Zero

Overhead Execution", IPDPS’22.

Example
This optimization will trigger for most target regions if state initialization was removed as a

consequence of "state forwarding". This will trigger for internal runtime functions so it requires

enabling verbose remarks with -openmp-opt-verbose-remarks (prefixed with -mllvm for use with

clang).

Diagnostic Scope
OpenMP optimization remark.

+-------------------------+----------------------+---+

|Diagnostics |Diagnostics |Diagnostics |

|Number |Kind |Description |

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

+-------------------------+----------------------+---+

|OMP100 |Analysis |Potentially unknown OpenMP target region |

| | |caller. |

+-------------------------+----------------------+---+

|OMP101 |Analysis |Parallel region is used in unknown / unexpected |

| | |ways. Will not attempt to rewrite the state |

| | |machine. |

+-------------------------+----------------------+---+

|OMP102 |Analysis |Parallel region is not called from a unique kernel. |

| | |Will not attempt to rewrite the state machine. |

+-------------------------+----------------------+---+

|OMP110 |Optimization |Moving globalized variable to the |

| | |stack. |

+-------------------------+----------------------+---+

|OMP111 |Optimization |Replaced globalized variable with X bytes of |

| | |shared memory. |

+-------------------------+----------------------+---+

|OMP112 |Missed |Found thread data sharing on the GPU. Expect |

| | |degraded performance due to data globalization. |

+-------------------------+----------------------+---+

|OMP113 |Missed |Could not move globalized variable to the stack. |

| | |Variable is potentially captured in call. Mark |

| | |parameter as __attribute__((noescape)) to |

| | |override. |

+-------------------------+----------------------+---+

|OMP120 |Optimization |Transformed generic-mode kernel to |

| | |SPMD-mode. |

+-------------------------+----------------------+---+

|OMP121 |Analysis |Value has potential side effects preventing |

| | |SPMD-mode execution. Add |

| | |__attribute__((assume("ompx_spmd_amenable"))) |

| | |to the called function to override. |

+-------------------------+----------------------+---+

|OMP130 |Optimization |Removing unused state machine from |

| | |generic-mode kernel. |

+-------------------------+----------------------+---+

|OMP131 |Optimization |Rewriting generic-mode kernel with a |

| | |customized state machine. |

+-------------------------+----------------------+---+

|OMP132 |Analysis |Generic-mode kernel is executed with a |

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

| | |customized state machine that requires a fallback. |

+-------------------------+----------------------+---+

|OMP133 |Analysis |Call may contain unknown parallel regions. Use |

| | |__attribute__((assume("omp_no_parallelism"))) |

| | |to override. |

+-------------------------+----------------------+---+

|OMP140 |Analysis |Could not internalize function. Some |

| | |optimizations may not be possible. |

+-------------------------+----------------------+---+

|OMP150 |Optimization |Parallel region merged with parallel region at |

| | |<location>. |

+-------------------------+----------------------+---+

|OMP160 |Optimization |Removing parallel region with no |

| | |side-effects. |

+-------------------------+----------------------+---+

|OMP170 |Optimization |OpenMP runtime call <call> |

| | |deduplicated. |

+-------------------------+----------------------+---+

|OMP180 |Optimization |Replacing OpenMP runtime call <call> with |

| | |<value>. |

+-------------------------+----------------------+---+

|OMP190 |Optimization |Redundant barrier eliminated. (device |

| | |only) |

+-------------------------+----------------------+---+

Dealing with OpenMP can be complicated. For help with the setup of an OpenMP (offload) capable

compiler toolchain, its usage, and common problems, consult the Support and FAQ page.

We also encourage everyone interested in OpenMP in LLVM to get involved.

SUPPORT, GETTING INVOLVED, AND FAQ
Please do not hesitate to reach out to us via openmp-dev@lists.llvm.org or join one of our regular calls.

Some common questions are answered in the FAQ.

Calls
OpenMP in LLVM Technical Call

+o Development updates on OpenMP (and OpenACC) in the LLVM Project, including Clang,

optimization, and runtime work.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

+o Join OpenMP in LLVM Technical Call.

+o Time: Weekly call on every Wednesday 7:00 AM Pacific time.

+o Meeting minutes are here.

+o Status tracking page.

OpenMP in Flang Technical Call

+o Development updates on OpenMP and OpenACC in the Flang Project.

+o Join OpenMP in Flang Technical Call

+o Time: Weekly call on every Thursdays 8:00 AM Pacific time.

+o Meeting minutes are here.

+o Status tracking page.

FAQ
NOTE:

The FAQ is a work in progress and most of the expected content is not yet available. While you

can expect changes, we always welcome feedback and additions. Please contact, e.g., through

openmp-dev@lists.llvm.org.

Q: How to contribute a patch to the webpage or any other part?
All patches go through the regular LLVM review process.

Q: How to build an OpenMP GPU offload capable compiler?
To build an effective OpenMP offload capable compiler, only one extra CMake option,

LLVM_ENABLE_RUNTIMES="openmp", is needed when building LLVM (Generic information

about building LLVM is available here.). Make sure all backends that are targeted by OpenMP to be

enabled. By default, Clang will be built with all backends enabled. When building with

LLVM_ENABLE_RUNTIMES="openmp" OpenMP should not be enabled in

LLVM_ENABLE_PROJECTS because it is enabled by default.

For Nvidia offload, please see Q: How to build an OpenMP NVidia offload capable compiler?. For

AMDGPU offload, please see Q: How to build an OpenMP AMDGPU offload capable compiler?.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

NOTE:
The compiler that generates the offload code should be the same (version) as the compiler that

builds the OpenMP device runtimes. The OpenMP host runtime can be built by a different

compiler.

Q: How to build an OpenMP NVidia offload capable compiler?
The Cuda SDK is required on the machine that will execute the openmp application.

If your build machine is not the target machine or automatic detection of the available GPUs failed,

you should also set:

+o CLANG_OPENMP_NVPTX_DEFAULT_ARCH=sm_XX where XX is the architecture of your

GPU, e.g, 80.

+o LIBOMPTARGET_NVPTX_COMPUTE_CAPABILITIES=YY where YY is the numeric compute

capacity of your GPU, e.g., 75.

Q: How to build an OpenMP AMDGPU offload capable compiler?
A subset of the ROCm toolchain is required to build the LLVM toolchain and to execute the openmp

application. Either install ROCm somewhere that cmake’s find_package can locate it, or build the

required subcomponents ROCt and ROCr from source.

The two components used are ROCT-Thunk-Interface, roct, and ROCR-Runtime, rocr. Roct is the

userspace part of the linux driver. It calls into the driver which ships with the linux kernel. It is an

implementation detail of Rocr from OpenMP’s perspective. Rocr is an implementation of HSA.

SOURCE_DIR=same-as-llvm-source # e.g. the checkout of llvm-project, next to openmp

BUILD_DIR=somewhere

INSTALL_PREFIX=same-as-llvm-install

cd $SOURCE_DIR

git clone git@github.com:RadeonOpenCompute/ROCT-Thunk-Interface.git -b roc-4.2.x \

--single-branch

git clone git@github.com:RadeonOpenCompute/ROCR-Runtime.git -b rocm-4.2.x \

--single-branch

cd $BUILD_DIR && mkdir roct && cd roct

cmake $SOURCE_DIR/ROCT-Thunk-Interface/ -DCMAKE_INSTALL_PREFIX=$INSTALL_PREFIX \

-DCMAKE_BUILD_TYPE=Release -DBUILD_SHARED_LIBS=OFF

make && make install

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

cd $BUILD_DIR && mkdir rocr && cd rocr

cmake $SOURCE_DIR/ROCR-Runtime/src -DIMAGE_SUPPORT=OFF \

-DCMAKE_INSTALL_PREFIX=$INSTALL_PREFIX -DCMAKE_BUILD_TYPE=Release \

-DBUILD_SHARED_LIBS=ON

make && make install

IMAGE_SUPPORT requires building rocr with clang and is not used by openmp.

Provided cmake’s find_package can find the ROCR-Runtime package, LLVM will build a tool

bin/amdgpu-arch which will print a string like gfx906 when run if it recognises a GPU on the

local system. LLVM will also build a shared library, libomptarget.rtl.amdgpu.so, which is

linked against rocr.

With those libraries installed, then LLVM build and installed, try:

clang -O2 -fopenmp -fopenmp-targets=amdgcn-amd-amdhsa example.c -o example && ./example

Q: What are the known limitations of OpenMP AMDGPU offload?
LD_LIBRARY_PATH or rpath/runpath are required to find libomp.so and libomptarget.so

There is no libc. That is, malloc and printf do not exist. Libm is implemented in terms of the rocm

device library, which will be searched for if linking with ’-lm’.

Some versions of the driver for the radeon vii (gfx906) will error unless the environment variable

’export HSA_IGNORE_SRAMECC_MISREPORT=1’ is set.

It is a recent addition to LLVM and the implementation differs from that which has been shipping in

ROCm and AOMP for some time. Early adopters will encounter bugs.

Q: What are the LLVM components used in offloading and how are they found?
The libraries used by an executable compiled for target offloading are:

+o libomp.so (or similar), the host openmp runtime

+o libomptarget.so, the target-agnostic target offloading openmp runtime

+o plugins loaded by libomptarget.so:

+o libomptarget.rtl.amdgpu.so

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

+o libomptarget.rtl.cuda.so

+o libomptarget.rtl.x86_64.so

+o libomptarget.rtl.ve.so

+o and others

+o dependencies of those plugins, e.g. cuda/rocr for nvptx/amdgpu

The compiled executable is dynamically linked against a host runtime, e.g. libomp.so, and

against the target offloading runtime, libomptarget.so. These are found like any other dynamic

library, by setting rpath or runpath on the executable, by setting LD_LIBRARY_PATH, or by

adding them to the system search.

libomptarget.so has rpath or runpath (whichever the system default is) set to $ORIGIN, and the

plugins are located next to it, so it will find the plugins without any environment variables set. If

LD_LIBRARY_PATH is set, whether it overrides which plugin is found depends on whether

your system treats -Wl,-rpath as RPATH or RUNPATH.

The plugins will try to find their dependencies in plugin-dependent fashion.

The cuda plugin is dynamically linked against libcuda if cmake found it at compiler build time.

Otherwise it will attempt to dlopen libcuda.so. It does not have rpath set.

The amdgpu plugin is linked against ROCr if cmake found it at compiler build time. Otherwise

it will attempt to dlopen libhsa-runtime64.so. It has rpath set to $ORIGIN, so installing

libhsa-runtime64.so in the same directory is a way to locate it without environment variables.

In addition to those, there is a compiler runtime library called deviceRTL. This is compiled

from mostly common code into an architecture specific bitcode library, e.g.

libomptarget-nvptx-sm_70.bc.

Clang and the deviceRTL need to match closely as the interface between them changes

frequently. Using both from the same monorepo checkout is strongly recommended.

Unlike the host side which lets environment variables select components, the deviceRTL that is

located in the clang lib directory is preferred. Only if it is absent, the LIBRARY_PATH
environment variable is searched to find a bitcode file with the right name. This can be

overridden by passing a clang flag, --libomptarget-nvptx-bc-path or

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

--libomptarget-amdgcn-bc-path. That can specify a directory or an exact bitcode file to use.

Q: Does OpenMP offloading support work in pre-packaged LLVM releases?
For now, the answer is most likely no. Please see Q: How to build an OpenMP GPU offload capable

compiler?.

Q: Does OpenMP offloading support work in packages distributed as part of my OS?
For now, the answer is most likely no. Please see Q: How to build an OpenMP GPU offload capable

compiler?.

Q: Does Clang support <math.h> and <complex.h> operations in OpenMP target on GPUs?
Yes, LLVM/Clang allows math functions and complex arithmetic inside of OpenMP target regions that

are compiled for GPUs.

Clang provides a set of wrapper headers that are found first when math.h and complex.h, for C, cmath

and complex, for C++, or similar headers are included by the application. These wrappers will

eventually include the system version of the corresponding header file after setting up a target device

specific environment. The fact that the system header is included is important because they differ based

on the architecture and operating system and may contain preprocessor, variable, and function

definitions that need to be available in the target region regardless of the targeted device architecture.

However, various functions may require specialized device versions, e.g., sin, and others are only

available on certain devices, e.g., __umul64hi. To provide "native" support for math and complex on

the respective architecture, Clang will wrap the "native" math functions, e.g., as provided by the device

vendor, in an OpenMP begin/end declare variant. These functions will then be picked up instead of the

host versions while host only variables and function definitions are still available. Complex arithmetic

and functions are support through a similar mechanism. It is worth noting that this support requires

extensions to the OpenMP begin/end declare variant context selector that are exposed through

LLVM/Clang to the user as well.

Q: What is a way to debug errors from mapping memory to a target device?
An experimental way to debug these errors is to use remote process offloading. By using

libomptarget.rtl.rpc.so and openmp-offloading-server, it is possible to explicitly perform memory

transfers between processes on the host CPU and run sanitizers while doing so in order to catch these

errors.

Q: Why does my application say "Named symbol not found" and abort when I run it?
This is most likely caused by trying to use OpenMP offloading with static libraries. Static libraries do

not contain any device code, so when the runtime attempts to execute the target region it will not be

found and you will get an an error like this.

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

CUDA error: Loading ’__omp_offloading_fd02_3231c15__Z3foov_l2’ Failed

CUDA error: named symbol not found

Libomptarget error: Unable to generate entries table for device id 0.

Currently, the only solution is to change how the application is built and avoid the use of static

libraries.

Q: Can I use dynamically linked libraries with OpenMP offloading?
Dynamically linked libraries can be only used if there is no device code split between the library and

application. Anything declared on the device inside the shared library will not be visible to the

application when it’s linked.

Q: How to build an OpenMP offload capable compiler with an outdated host compiler?
Enabling the OpenMP runtime will perform a two-stage build for you. If your host compiler is

different from your system-wide compiler, you may need to set the CMake variable

GCC_INSTALL_PREFIX so clang will be able to find the correct GCC toolchain in the second stage

of the build.

For example, if your system-wide GCC installation is too old to build LLVM and you would like to use

a newer GCC, set the CMake variable GCC_INSTALL_PREFIX to inform clang of the GCC

installation you would like to use in the second stage.

Q: How can I include OpenMP offloading support in my CMake project?
Currently, there is an experimental CMake find module for OpenMP target offloading provided by

LLVM. It will attempt to find OpenMP target offloading support for your compiler. The flags

necessary for OpenMP target offloading will be loaded into the

OpenMPTarget::OpenMPTarget_<device> target or the OpenMPTarget_<device>_FLAGS variable if

successful. Currently supported devices are AMDGPU and NVPTX.

To use this module, simply add the path to CMake’s current module path and call find_package. The

module will be installed with your OpenMP installation by default. Including OpenMP offloading

support in an application should now only require a few additions.

cmake_minimum_required(VERSION 3.13.4)

project(offloadTest VERSION 1.0 LANGUAGES CXX)

list(APPEND CMAKE_MODULE_PATH "${PATH_TO_OPENMP_INSTALL}/lib/cmake/openmp")

find_package(OpenMPTarget REQUIRED NVPTX)

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

add_executable(offload)

target_link_libraries(offload PRIVATE OpenMPTarget::OpenMPTarget_NVPTX)

target_sources(offload PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/src/Main.cpp)

Using this module requires at least CMake version 3.13.4. Supported languages are C and C++

with Fortran support planned in the future. Compiler support is best for Clang but this module

should work for other compiler vendors such as IBM, GNU.

Q: What does ’Stack size for entry function cannot be statically determined’ mean?
This is a warning that the Nvidia tools will sometimes emit if the offloading region is too complex.

Normally, the CUDA tools attempt to statically determine how much stack memory each thread. This

way when the kernel is launched each thread will have as much memory as it needs. If the control flow

of the kernel is too complex, containing recursive calls or nested parallelism, this analysis can fail. If

this warning is triggered it means that the kernel may run out of stack memory during execution and

crash. The environment variable LIBOMPTARGET_STACK_SIZE can be used to increase the stack

size if this occurs.

The current (in-progress) release notes can be found here while release notes for releases, starting with

LLVM 12, will be available on the Download Page.

OPENMP 15.0.0 RELEASE NOTES
WARNING:

These are in-progress notes for the upcoming LLVM 15.0.0 release. Release notes for previous

releases can be found on the Download Page.

Introduction
This document contains the release notes for the OpenMP runtime, release 15.0.0. Here we describe

the status of OpenMP, including major improvements from the previous release. All OpenMP releases

may be downloaded from the LLVM releases web site.

Non-comprehensive list of changes in this release

AUTHOR
unknown

COPYRIGHT
2013-2023, LLVM/OpenMP

LLVMOPENMP(1) LLVM/OpenMP LLVMOPENMP(1)

15 December 15, 2023 LLVMOPENMP(1)

