
NAME
lockf - record locking on files

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int

lockf(int fd, int function, off_t size);

DESCRIPTION
The lockf() function allows sections of a file to be locked with advisory-mode locks. Calls to lockf()
from other processes which attempt to lock the locked file section will either return an error value or

block until the section becomes unlocked. All the locks for a process are removed when the process

terminates.

The argument fd is an open file descriptor. The file descriptor must have been opened either for write-

only (O_WRONLY) or read/write (O_RDWR) operation.

The function argument is a control value which specifies the action to be taken. The permissible values

for function are as follows:

Function Description
F_ULOCK unlock locked sections

F_LOCK lock a section for exclusive use

F_TLOCK test and lock a section for exclusive use

F_TEST test a section for locks by other processes

F_ULOCK removes locks from a section of the file; F_LOCK and F_TLOCK both lock a section of a

file if the section is available; F_TEST detects if a lock by another process is present on the specified

section.

The size argument is the number of contiguous bytes to be locked or unlocked. The section to be locked

or unlocked starts at the current offset in the file and extends forward for a positive size or backward for

a negative size (the preceding bytes up to but not including the current offset). However, it is not

permitted to lock a section that starts or extends before the beginning of the file. If size is 0, the section

from the current offset through the largest possible file offset is locked (that is, from the current offset

through the present or any future end-of-file).

LOCKF(3) FreeBSD Library Functions Manual LOCKF(3)

FreeBSD 14.0-RELEASE-p6 September 11, 2013 FreeBSD 14.0-RELEASE-p6



The sections locked with F_LOCK or F_TLOCK may, in whole or in part, contain or be contained by a

previously locked section for the same process. When this occurs, or if adjacent locked sections would

occur, the sections are combined into a single locked section. If the request would cause the number of

locks to exceed a system-imposed limit, the request will fail.

F_LOCK and F_TLOCK requests differ only by the action taken if the section is not available.

F_LOCK blocks the calling process until the section is available. F_TLOCK makes the function fail if

the section is already locked by another process.

File locks are released on first close by the locking process of any file descriptor for the file.

F_ULOCK requests release (wholly or in part) one or more locked sections controlled by the process.

Locked sections will be unlocked starting at the current file offset through size bytes or to the end of file

if size is 0. When all of a locked section is not released (that is, when the beginning or end of the area to

be unlocked falls within a locked section), the remaining portions of that section are still locked by the

process. Releasing the center portion of a locked section will cause the remaining locked beginning and

end portions to become two separate locked sections. If the request would cause the number of locks in

the system to exceed a system-imposed limit, the request will fail.

An F_ULOCK request in which size is non-zero and the offset of the last byte of the requested section is

the maximum value for an object of type off_t, when the process has an existing lock in which size is 0

and which includes the last byte of the requested section, will be treated as a request to unlock from the

start of the requested section with a size equal to 0. Otherwise an F_ULOCK request will attempt to

unlock only the requested section.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting to

lock the locked region of another process. This implementation detects that sleeping until a locked

region is unlocked would cause a deadlock and fails with an EDEADLK error.

The lockf(), fcntl(2), and flock(2) locks are compatible. Processes using different locking interfaces can

cooperate over the same file safely. However, only one of such interfaces should be used within the

same process. If a file is locked by a process through flock(2), any record within the file will be seen as

locked from the viewpoint of another process using fcntl(2) or lockf(), and vice versa.

Blocking on a section is interrupted by any signal.

RETURN VALUES
The lockf() function returns the value 0 if successful; otherwise the value -1 is returned and the global

variable errno is set to indicate the error. In the case of a failure, existing locks are not changed.

LOCKF(3) FreeBSD Library Functions Manual LOCKF(3)

FreeBSD 14.0-RELEASE-p6 September 11, 2013 FreeBSD 14.0-RELEASE-p6



ERRORS
The lockf() function will fail if:

[EAGAIN] The argument function is F_TLOCK or F_TEST and the section is already locked

by another process.

[EBADF] The argument fd is not a valid open file descriptor.

The argument function is F_LOCK or F_TLOCK, and fd is not a valid file

descriptor open for writing.

[EDEADLK] The argument function is F_LOCK and a deadlock is detected.

[EINTR] The argument function is F_LOCK and lockf() was interrupted by the delivery of

a signal.

[EINVAL] The argument function is not one of F_ULOCK, F_LOCK, F_TLOCK or

F_TEST.

The argument fd refers to a file that does not support locking.

[ENOLCK] The argument function is F_ULOCK, F_LOCK or F_TLOCK, and satisfying the

lock or unlock request would result in the number of locked regions in the system

exceeding a system-imposed limit.

SEE ALSO
fcntl(2), flock(2)

STANDARDS
The lockf() function conforms to X/Open Portability Guide Issue 4, Version 2 ("XPG4.2").

LOCKF(3) FreeBSD Library Functions Manual LOCKF(3)

FreeBSD 14.0-RELEASE-p6 September 11, 2013 FreeBSD 14.0-RELEASE-p6


