
NAME
lp - printer port Internet Protocol driver

SYNOPSIS
ifconfig plip0 myaddress hisaddress [-link0]

device ppbus
device plip
device ppc

DESCRIPTION
The lp driver allows a PC parallel printer port to be used as a point-to-point network interface between

two similarly configured systems. Data is transferred 4 bits at a time, using the printer status lines for

input: hence there is no requirement for special bidirectional hardware and any standard AT-compatible

printer port with working interrupts may be used.

During the boot process, for each plip device which is probed and has an interrupt assigned, a

corresponding network device is created.

Configuring an lp device with ifconfig(8) causes the corresponding parallel port bus to be reserved for

PLIP until the network interface is configured ’down’.

The communication protocol is selected by the link0 flag:

-link0 (default) Use FreeBSD mode (LPIP). This is the simpler of the two modes and therefore

slightly more efficient.

link0 Use Crynwr/Linux compatible mode (CLPIP). This mode has a simulated Ethernet packet

header, and is easier to interface to other types of equipment.

The interface MTU defaults to 1500, but may be set to any value. Both ends of the link must be

configured with the same MTU.

Cable Connections
The cable connecting the two parallel ports should be wired as follows:

Pin Pin Description

2 15 Data0 -> ERROR*

3 13 Data1 -> SLCT

4 12 Data2 -> PE

LP(4) FreeBSD Kernel Interfaces Manual LP(4)

FreeBSD 14.0-RELEASE-p11 March 4, 1996 FreeBSD 14.0-RELEASE-p11



5 10 Data3 -> ACK*

6 11 Data4 -> BUSY

15 2 ERROR* -> Data0

13 3 SLCT -> Data1

12 4 PE -> Data2

10 5 ACK* -> Data3

11 6 BUSY -> Data4

18-25 18-25 Ground

Cables with this wiring are widely available as ’Laplink’ cables, and are often coloured yellow.

The connections are symmetric, and provide 5 lines in each direction (four data plus one handshake).

The two modes use the same wiring, but make a different choice of which line to use as handshake.

FreeBSD LPIP mode
The signal lines are used as follows:

Data0 (Pin 2) Data out, bit 0.

Data1 (Pin 3) Data out, bit 1.

Data2 (Pin 4) Data out, bit 2.

Data3 (Pin 5) Handshake out.

Data4 (Pin 6) Data out, bit 3.

ERROR* (pin 15)

Data in, bit 0.

SLCT (pin 13) Data in, bit 1.

PE (pin 12) Data in, bit 2.

BUSY (pin 11) Data in, bit 3.

ACK* (pin 10) Handshake in.

When idle, all data lines are at zero. Each byte is signalled in four steps: sender writes the 4 most

significant bits and raises the handshake line; receiver reads the 4 bits and raises its handshake to

LP(4) FreeBSD Kernel Interfaces Manual LP(4)

FreeBSD 14.0-RELEASE-p11 March 4, 1996 FreeBSD 14.0-RELEASE-p11



acknowledge; sender places the 4 least significant bits on the data lines and lowers the handshake;

receiver reads the data and lowers its handshake.

The packet format has a two-byte header, comprising the fixed values 0x08, 0x00, immediately followed

by the IP header and data.

The start of a packet is indicated by simply signalling the first byte of the header. The end of the packet

is indicated by inverting the data lines (i.e., writing the ones-complement of the previous nibble to be

transmitted) without changing the state of the handshake.

Note that the end-of-packet marker assumes that the handshake signal and the data-out bits can be

written in a single instruction - otherwise certain byte values in the packet data would falsely be

interpreted as end-of-packet. This is not a problem for the PC printer port, but requires care when

implementing this protocol on other equipment.

Crynwr/Linux CLPIP mode
The signal lines are used as follows:

Data0 (Pin 2) Data out, bit 0.

Data1 (Pin 3) Data out, bit 1.

Data2 (Pin 4) Data out, bit 2.

Data3 (Pin 5) Data out, bit 3.

Data4 (Pin 6) Handshake out.

ERROR* (pin 15)

Data in, bit 0.

SLCT (pin 13) Data in, bit 1.

PE (pin 12) Data in, bit 2.

ACK* (pin 10) Data in, bit 3.

BUSY (pin 11) Handshake in.

When idle, all data lines are at zero. Each byte is signalled in four steps: sender writes the 4 least

LP(4) FreeBSD Kernel Interfaces Manual LP(4)

FreeBSD 14.0-RELEASE-p11 March 4, 1996 FreeBSD 14.0-RELEASE-p11



significant bits and raises the handshake line; receiver reads the 4 bits and raises its handshake to

acknowledge; sender places the 4 most significant bits on the data lines and lowers the handshake;

receiver reads the data and lowers its handshake. [Note that this is the opposite nibble order to LPIP

mode].

Packet format is:

Length (least significant byte)

Length (most significant byte)

12 bytes of supposed MAC addresses (ignored by FreeBSD).

Fixed byte 0x08

Fixed byte 0x00

<IP datagram>

Checksum byte.

The length includes the 14 header bytes, but not the length bytes themselves nor the checksum byte.

The checksum is a simple arithmetic sum of all the bytes (again, including the header but not checksum

or length bytes). FreeBSD calculates outgoing checksums, but does not validate incoming ones.

The start of packet has to be signalled specially, since the line chosen for handshake-in cannot be used to

generate an interrupt. The sender writes the value 0x08 to the data lines, and waits for the receiver to

respond by writing 0x01 to its data lines. The sender then starts signalling the first byte of the packet

(the length byte).

End of packet is deduced from the packet length and is not signalled specially (although the data lines

are restored to the zero, idle state to avoid spuriously indicating the start of the next packet).

SEE ALSO
ppbus(4), ppc(4), ifconfig(8)

BUGS
Busy-waiting loops are used while handshaking bytes, (and worse still when waiting for the receiving

system to respond to an interrupt for the start of a packet). Hence a fast system talking to a slow one

will consume excessive amounts of CPU. This is unavoidable in the case of CLPIP mode due to the

choice of handshake lines; it could theoretically be improved in the case of LPIP mode.

Polling timeouts are controlled by counting loop iterations rather than timers, and so are dependent on

CPU speed. This is somewhat stabilised by the need to perform (slow) ISA bus cycles to actually read

the port.

LP(4) FreeBSD Kernel Interfaces Manual LP(4)

FreeBSD 14.0-RELEASE-p11 March 4, 1996 FreeBSD 14.0-RELEASE-p11


