
NAME
lseek - reposition read/write file offset

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

off_t

lseek(int fildes, off_t offset, int whence);

DESCRIPTION
The lseek() system call repositions the offset of the file descriptor fildes to the argument offset according

to the directive whence. The argument fildes must be an open file descriptor. The lseek() system call

repositions the file position pointer associated with the file descriptor fildes as follows:

If whence is SEEK_SET, the offset is set to offset bytes.

If whence is SEEK_CUR, the offset is set to its current location plus offset bytes.

If whence is SEEK_END, the offset is set to the size of the file plus offset bytes.

If whence is SEEK_HOLE, the offset is set to the start of the next hole greater than or equal to the

supplied offset. The definition of a hole is provided below.

If whence is SEEK_DATA, the offset is set to the start of the next non-hole file region greater

than or equal to the supplied offset.

The lseek() system call allows the file offset to be set beyond the end of the existing end-of-file of the

file. If data is later written at this point, subsequent reads of the data in the gap return bytes of zeros

(until data is actually written into the gap). However, the lseek() system call does not, by itself, extend

the size of a file.

A "hole" is defined as a contiguous range of bytes in a file, all having the value of zero, but not all zeros

in a file are guaranteed to be represented as holes returned with SEEK_HOLE. File systems are allowed

to expose ranges of zeros with SEEK_HOLE, but not required to. Applications can use SEEK_HOLE to

optimise their behavior for ranges of zeros, but must not depend on it to find all such ranges in a file.

Each file is presented as having a zero-size virtual hole at the very end of the file. The existence of a

hole at the end of every data region allows for easy programming and also provides compatibility to the

LSEEK(2) FreeBSD System Calls Manual LSEEK(2)

FreeBSD 14.0-RELEASE-p6 July 13, 2020 FreeBSD 14.0-RELEASE-p6



original implementation in Solaris. It also causes the current file size (i.e., end-of-file offset) to be

returned to indicate that there are no more holes past the supplied offset. Applications should use

fpathconf(_PC_MIN_HOLE_SIZE) or pathconf(_PC_MIN_HOLE_SIZE) to determine if a file system

supports SEEK_HOLE. See pathconf(2).

For file systems that do not supply information about holes, the file will be represented as one entire data

region.

RETURN VALUES
Upon successful completion, lseek() returns the resulting offset location as measured in bytes from the

beginning of the file. Otherwise, a value of -1 is returned and errno is set to indicate the error.

ERRORS
The lseek() system call will fail and the file position pointer will remain unchanged if:

[EBADF] The fildes argument is not an open file descriptor.

[EINVAL] The whence argument is not a proper value or the resulting file offset would be

negative for a non-character special file.

[ENXIO] For SEEK_DATA, there are no more data regions past the supplied offset. Due to

existence of the hole at the end of the file, for SEEK_HOLE this error is only

returned when the offset already points to the end-of-file position.

[EOVERFLOW] The resulting file offset would be a value which cannot be represented correctly in

an object of type off_t.

[ESPIPE] The fildes argument is associated with a pipe, socket, or FIFO.

SEE ALSO
dup(2), open(2), pathconf(2)

STANDARDS
The lseek() system call is expected to conform to IEEE Std 1003.1-2008 ("POSIX.1").

The SEEK_HOLE and SEEK_DATA directives, along with the ENXIO error, are extensions to that

specification.

HISTORY
The lseek() function appeared in Version 7 AT&T UNIX.

LSEEK(2) FreeBSD System Calls Manual LSEEK(2)

FreeBSD 14.0-RELEASE-p6 July 13, 2020 FreeBSD 14.0-RELEASE-p6



BUGS
If the lseek() system call is operating on a device which is incapable of seeking, it will request the seek

operation and return successfully, even though no seek was performed. Because the offset argument

will be stored unconditionally in the file descriptor of that device, there is no way to confirm if the seek

operation succeeded or not (e.g. using the ftell() function). Device types which are known to be

incapable of seeking include tape drives.

The lseek() system call will not detect whether media are present in changeable media devices such as

DVD or Blu-ray devices. A requested seek operation will therefore return sucessfully when no medium

is present.

This document’s use of whence is incorrect English, but is maintained for historical reasons.

LSEEK(2) FreeBSD System Calls Manual LSEEK(2)

FreeBSD 14.0-RELEASE-p6 July 13, 2020 FreeBSD 14.0-RELEASE-p6


