
NAME
mbuf - memory management in the kernel IPC subsystem

SYNOPSIS
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>

Mbuf allocation macros
MGET(struct mbuf *mbuf, int how, short type);

MGETHDR(struct mbuf *mbuf, int how, short type);

int

MCLGET(struct mbuf *mbuf, int how);

MEXTADD(struct mbuf *mbuf, char *buf, u_int size, void (*free)(struct mbuf *), void *opt_arg1,

void *opt_arg2, int flags, int type);

Mbuf utility macros
type

mtod(struct mbuf *mbuf, type);

void *

mtodo(struct mbuf *mbuf, offset);

M_ALIGN(struct mbuf *mbuf, u_int len);

MH_ALIGN(struct mbuf *mbuf, u_int len);

int

M_LEADINGSPACE(struct mbuf *mbuf);

int

M_TRAILINGSPACE(struct mbuf *mbuf);

M_MOVE_PKTHDR(struct mbuf *to, struct mbuf *from);

M_PREPEND(struct mbuf *mbuf, int len, int how);

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

MCHTYPE(struct mbuf *mbuf, short type);

int

M_WRITABLE(struct mbuf *mbuf);

Mbuf allocation functions
struct mbuf *

m_get(int how, short type);

struct mbuf *

m_get2(int size, int how, short type, int flags);

struct mbuf *

m_get3(int size, int how, short type, int flags);

struct mbuf *

m_getm(struct mbuf *orig, int len, int how, short type);

struct mbuf *

m_getjcl(int how, short type, int flags, int size);

struct mbuf *

m_getcl(int how, short type, int flags);

struct mbuf *

m_gethdr(int how, short type);

struct mbuf *

m_free(struct mbuf *mbuf);

void

m_freem(struct mbuf *mbuf);

Mbuf utility functions
void

m_adj(struct mbuf *mbuf, int len);

void

m_align(struct mbuf *mbuf, int len);

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

int

m_append(struct mbuf *mbuf, int len, c_caddr_t cp);

struct mbuf *

m_prepend(struct mbuf *mbuf, int len, int how);

struct mbuf *

m_copyup(struct mbuf *mbuf, int len, int dstoff);

struct mbuf *

m_pullup(struct mbuf *mbuf, int len);

struct mbuf *

m_pulldown(struct mbuf *mbuf, int offset, int len, int *offsetp);

struct mbuf *

m_copym(struct mbuf *mbuf, int offset, int len, int how);

struct mbuf *

m_copypacket(struct mbuf *mbuf, int how);

struct mbuf *

m_dup(const struct mbuf *mbuf, int how);

void

m_copydata(const struct mbuf *mbuf, int offset, int len, caddr_t buf);

void

m_copyback(struct mbuf *mbuf, int offset, int len, caddr_t buf);

struct mbuf *

m_devget(char *buf, int len, int offset, struct ifnet *ifp, void (*copy)(char *from, caddr_t to, u_int len));

void

m_cat(struct mbuf *m, struct mbuf *n);

void

m_catpkt(struct mbuf *m, struct mbuf *n);

u_int

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

m_fixhdr(struct mbuf *mbuf);

int

m_dup_pkthdr(struct mbuf *to, const struct mbuf *from, int how);

void

m_move_pkthdr(struct mbuf *to, struct mbuf *from);

u_int

m_length(struct mbuf *mbuf, struct mbuf **last);

struct mbuf *

m_split(struct mbuf *mbuf, int len, int how);

int

m_apply(struct mbuf *mbuf, int off, int len, int (*f)(void *arg, void *data, u_int len), void *arg);

struct mbuf *

m_getptr(struct mbuf *mbuf, int loc, int *off);

struct mbuf *

m_defrag(struct mbuf *m0, int how);

struct mbuf *

m_collapse(struct mbuf *m0, int how, int maxfrags);

struct mbuf *

m_unshare(struct mbuf *m0, int how);

DESCRIPTION
An mbuf is a basic unit of memory management in the kernel IPC subsystem. Network packets and

socket buffers are stored in mbufs. A network packet may span multiple mbufs arranged into a mbuf

chain (linked list), which allows adding or trimming network headers with little overhead.

While a developer should not bother with mbuf internals without serious reason in order to avoid

incompatibilities with future changes, it is useful to understand the general structure of an mbuf.

An mbuf consists of a variable-sized header and a small internal buffer for data. The total size of an

mbuf, MSIZE, is a constant defined in <sys/param.h>. The mbuf header includes:

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

m_next (struct mbuf *) A pointer to the next mbuf in the mbuf chain.

m_nextpkt (struct mbuf *) A pointer to the next mbuf chain in the queue.

m_data (caddr_t) A pointer to data attached to this mbuf.

m_len (int) The length of the data.

m_type (short) The type of the data.

m_flags (int) The mbuf flags.

The mbuf flag bits are defined as follows:

#define M_EXT 0x00000001 /* has associated external storage */

#define M_PKTHDR 0x00000002 /* start of record */

#define M_EOR 0x00000004 /* end of record */

#define M_RDONLY 0x00000008 /* associated data marked read-only */

#define M_BCAST 0x00000010 /* send/received as link-level broadcast */

#define M_MCAST 0x00000020 /* send/received as link-level multicast */

#define M_PROMISC 0x00000040 /* packet was not for us */

#define M_VLANTAG 0x00000080 /* ether_vtag is valid */

#define M_EXTPG 0x00000100 /* has array of unmapped pages and TLS */

#define M_NOFREE 0x00000200 /* do not free mbuf, embedded in cluster */

#define M_TSTMP 0x00000400 /* rcv_tstmp field is valid */

#define M_TSTMP_HPREC 0x00000800 /* rcv_tstmp is high-prec, typically

hw-stamped on port (useful for IEEE 1588

and 802.1AS) */

#define M_PROTO1 0x00001000 /* protocol-specific */

#define M_PROTO2 0x00002000 /* protocol-specific */

#define M_PROTO3 0x00004000 /* protocol-specific */

#define M_PROTO4 0x00008000 /* protocol-specific */

#define M_PROTO5 0x00010000 /* protocol-specific */

#define M_PROTO6 0x00020000 /* protocol-specific */

#define M_PROTO7 0x00040000 /* protocol-specific */

#define M_PROTO8 0x00080000 /* protocol-specific */

#define M_PROTO9 0x00100000 /* protocol-specific */

#define M_PROTO10 0x00200000 /* protocol-specific */

#define M_PROTO11 0x00400000 /* protocol-specific */

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

#define M_PROTO12 0x00800000 /* protocol-specific */

The available mbuf types are defined as follows:

#define MT_DATA 1 /* dynamic (data) allocation */

#define MT_HEADER MT_DATA /* packet header */

#define MT_VENDOR1 4 /* for vendor-internal use */

#define MT_VENDOR2 5 /* for vendor-internal use */

#define MT_VENDOR3 6 /* for vendor-internal use */

#define MT_VENDOR4 7 /* for vendor-internal use */

#define MT_SONAME 8 /* socket name */

#define MT_EXP1 9 /* for experimental use */

#define MT_EXP2 10 /* for experimental use */

#define MT_EXP3 11 /* for experimental use */

#define MT_EXP4 12 /* for experimental use */

#define MT_CONTROL 14 /* extra-data protocol message */

#define MT_EXTCONTROL 15 /* control message with externalized contents */

#define MT_OOBDATA 16 /* expedited data */

The available external buffer types are defined as follows:

#define EXT_CLUSTER 1 /* mbuf cluster */

#define EXT_SFBUF 2 /* sendfile(2)’s sf_bufs */

#define EXT_JUMBOP 3 /* jumbo cluster 4096 bytes */

#define EXT_JUMBO9 4 /* jumbo cluster 9216 bytes */

#define EXT_JUMBO16 5 /* jumbo cluster 16184 bytes */

#define EXT_PACKET 6 /* mbuf+cluster from packet zone */

#define EXT_MBUF 7 /* external mbuf reference */

#define EXT_RXRING 8 /* data in NIC receive ring */

#define EXT_PGS 9 /* array of unmapped pages */

#define EXT_VENDOR1 224 /* for vendor-internal use */

#define EXT_VENDOR2 225 /* for vendor-internal use */

#define EXT_VENDOR3 226 /* for vendor-internal use */

#define EXT_VENDOR4 227 /* for vendor-internal use */

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

#define EXT_EXP1 244 /* for experimental use */

#define EXT_EXP2 245 /* for experimental use */

#define EXT_EXP3 246 /* for experimental use */

#define EXT_EXP4 247 /* for experimental use */

#define EXT_NET_DRV 252 /* custom ext_buf provided by net driver(s) */

#define EXT_MOD_TYPE 253 /* custom module’s ext_buf type */

#define EXT_DISPOSABLE 254 /* can throw this buffer away w/page flipping */

#define EXT_EXTREF 255 /* has externally maintained ref_cnt ptr */

If the M_PKTHDR flag is set, a struct pkthdr m_pkthdr is added to the mbuf header. It contains a

pointer to the interface the packet has been received from (struct ifnet *rcvif), and the total packet length

(int len). Optionally, it may also contain an attached list of packet tags (struct m_tag). See

mbuf_tags(9) for details. Fields used in offloading checksum calculation to the hardware are kept in

m_pkthdr as well. See HARDWARE-ASSISTED CHECKSUM CALCULATION for details.

If small enough, data is stored in the internal data buffer of an mbuf. If the data is sufficiently large,

another mbuf may be added to the mbuf chain, or external storage may be associated with the mbuf.

MHLEN bytes of data can fit into an mbuf with the M_PKTHDR flag set, MLEN bytes can otherwise.

If external storage is being associated with an mbuf, the m_ext header is added at the cost of losing the

internal data buffer. It includes a pointer to external storage, the size of the storage, a pointer to a

function used for freeing the storage, a pointer to an optional argument that can be passed to the

function, and a pointer to a reference counter. An mbuf using external storage has the M_EXT flag set.

The system supplies a macro for allocating the desired external storage buffer, MEXTADD.

The allocation and management of the reference counter is handled by the subsystem.

The system also supplies a default type of external storage buffer called an mbuf cluster. Mbuf clusters

can be allocated and configured with the use of the MCLGET macro. Each mbuf cluster is MCLBYTES

in size, where MCLBYTES is a machine-dependent constant. The system defines an advisory macro

MINCLSIZE, which is the smallest amount of data to put into an mbuf cluster. It is equal to MHLEN

plus one. It is typically preferable to store data into the data region of an mbuf, if size permits, as

opposed to allocating a separate mbuf cluster to hold the same data.

Macros and Functions
There are numerous predefined macros and functions that provide the developer with common utilities.

mtod(mbuf, type)

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

Convert an mbuf pointer to a data pointer. The macro expands to the data pointer cast to the

specified type. Note: It is advisable to ensure that there is enough contiguous data in mbuf. See

m_pullup() for details.

mtodo(mbuf, offset)

Return a data pointer at an offset (in bytes) into the data attached to mbuf. Returns a void *

pointer . Note: The caller must ensure that the offset is in bounds of the attached data.

MGET(mbuf, how, type)

Allocate an mbuf and initialize it to contain internal data. mbuf will point to the allocated mbuf

on success, or be set to NULL on failure. The how argument is to be set to M_WAITOK or

M_NOWAIT. It specifies whether the caller is willing to block if necessary. A number of other

functions and macros related to mbufs have the same argument because they may at some point

need to allocate new mbufs.

MGETHDR(mbuf, how, type)

Allocate an mbuf and initialize it to contain a packet header and internal data. See MGET() for

details.

MEXTADD(mbuf, buf, size, free, opt_arg1, opt_arg2, flags, type)

Associate externally managed data with mbuf. Any internal data contained in the mbuf will be

discarded, and the M_EXT flag will be set. The buf and size arguments are the address and

length, respectively, of the data. The free argument points to a function which will be called to

free the data when the mbuf is freed; it is only used if type is EXT_EXTREF. The opt_arg1 and

opt_arg2 arguments will be saved in ext_arg1 and ext_arg2 fields of the struct m_ext of the mbuf.

The flags argument specifies additional mbuf flags; it is not necessary to specify M_EXT.

Finally, the type argument specifies the type of external data, which controls how it will be

disposed of when the mbuf is freed. In most cases, the correct value is EXT_EXTREF.

MCLGET(mbuf, how)

Allocate and attach an mbuf cluster to mbuf. On success, a non-zero value returned; otherwise, 0.

Historically, consumers would check for success by testing the M_EXT flag on the mbuf, but this

is now discouraged to avoid unnecessary awareness of the implementation of external storage in

protocol stacks and device drivers.

M_ALIGN(mbuf, len)

Set the pointer mbuf->m_data to place an object of the size len at the end of the internal data area

of mbuf, long word aligned. Applicable only if mbuf is newly allocated with MGET() or m_get().

MH_ALIGN(mbuf, len)

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

Serves the same purpose as M_ALIGN() does, but only for mbuf newly allocated with

MGETHDR() or m_gethdr(), or initialized by m_dup_pkthdr() or m_move_pkthdr().

m_align(mbuf, len)

Services the same purpose as M_ALIGN() but handles any type of mbuf.

M_LEADINGSPACE(mbuf)

Returns the number of bytes available before the beginning of data in mbuf.

M_TRAILINGSPACE(mbuf)

Returns the number of bytes available after the end of data in mbuf.

M_PREPEND(mbuf, len, how)

This macro operates on an mbuf chain. It is an optimized wrapper for m_prepend() that can make

use of possible empty space before data (e.g. left after trimming of a link-layer header). The new

mbuf chain pointer or NULL is in mbuf after the call.

M_MOVE_PKTHDR(to, from)

Using this macro is equivalent to calling m_move_pkthdr(to, from).

M_WRITABLE(mbuf)

This macro will evaluate true if mbuf is not marked M_RDONLY and if either mbuf does not

contain external storage or, if it does, then if the reference count of the storage is not greater than

1. The M_RDONLY flag can be set in mbuf->m_flags. This can be achieved during setup of the

external storage, by passing the M_RDONLY bit as a flags argument to the MEXTADD() macro,

or can be directly set in individual mbufs.

MCHTYPE(mbuf, type)

Change the type of mbuf to type. This is a relatively expensive operation and should be avoided.

The functions are:

m_get(how, type)

A function version of MGET() for non-critical paths.

m_get2(size, how, type, flags)

Allocate an mbuf with enough space to hold specified amount of data. If the size is larger than

MJUMPAGESIZE, NULL will be returned.

m_get3(size, how, type, flags)

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

Allocate an mbuf with enough space to hold specified amount of data. If the size is larger than

MJUM16BYTES, NULL will be returned.

m_getm(orig, len, how, type)

Allocate len bytes worth of mbufs and mbuf clusters if necessary and append the resulting

allocated mbuf chain to the mbuf chain orig, if it is non-NULL. If the allocation fails at any point,

free whatever was allocated and return NULL. If orig is non-NULL, it will not be freed. It is

possible to use m_getm() to either append len bytes to an existing mbuf or mbuf chain (for

example, one which may be sitting in a pre-allocated ring) or to simply perform an all-or-nothing

mbuf and mbuf cluster allocation.

m_gethdr(how, type)

A function version of MGETHDR() for non-critical paths.

m_getcl(how, type, flags)

Fetch an mbuf with a mbuf cluster attached to it. If one of the allocations fails, the entire

allocation fails. This routine is the preferred way of fetching both the mbuf and mbuf cluster

together, as it avoids having to unlock/relock between allocations. Returns NULL on failure.

m_getjcl(how, type, flags, size)

This is like m_getcl() but the specified size of the cluster to be allocated must be one of

MCLBYTES, MJUMPAGESIZE, MJUM9BYTES, or MJUM16BYTES.

m_free(mbuf)

Frees mbuf. Returns m_next of the freed mbuf.

The functions below operate on mbuf chains.

m_freem(mbuf)

Free an entire mbuf chain, including any external storage.

m_adj(mbuf, len)

Trim len bytes from the head of an mbuf chain if len is positive, from the tail otherwise.

m_append(mbuf, len, cp)

Append len bytes of data cp to the mbuf chain. Extend the mbuf chain if the new data does not fit

in existing space.

m_prepend(mbuf, len, how)

Allocate a new mbuf and prepend it to the mbuf chain, handle M_PKTHDR properly. Note: It

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

does not allocate any mbuf clusters, so len must be less than MLEN or MHLEN, depending on the

M_PKTHDR flag setting.

m_copyup(mbuf, len, dstoff)

Similar to m_pullup() but copies len bytes of data into a new mbuf at dstoff bytes into the mbuf.

The dstoff argument aligns the data and leaves room for a link layer header. Returns the new

mbuf chain on success, and frees the mbuf chain and returns NULL on failure. Note: The function

does not allocate mbuf clusters, so len + dstoff must be less than MHLEN.

m_pullup(mbuf, len)

Arrange that the first len bytes of an mbuf chain are contiguous and lay in the data area of mbuf,

so they are accessible with mtod(mbuf, type). It is important to remember that this may involve

reallocating some mbufs and moving data so all pointers referencing data within the old mbuf

chain must be recalculated or made invalid. Return the new mbuf chain on success, NULL on

failure (the mbuf chain is freed in this case). Note: It does not allocate any mbuf clusters, so len

must be less than or equal to MHLEN.

m_pulldown(mbuf, offset, len, offsetp)

Arrange that len bytes between offset and offset + len in the mbuf chain are contiguous and lay in

the data area of mbuf, so they are accessible with mtod() or mtodo(). len must be smaller than, or

equal to, the size of an mbuf cluster. Return a pointer to an intermediate mbuf in the chain

containing the requested region; the offset in the data region of the mbuf chain to the data

contained in the returned mbuf is stored in *offsetp. If offsetp is NULL, the region may be

accessed using mtod(mbuf, type) or mtodo(mbuf, 0). If offsetp is non-NULL, the region may be

accessed using mtodo(mbuf, *offsetp). The region of the mbuf chain between its beginning and

offset is not modified, therefore it is safe to hold pointers to data within this region before calling

m_pulldown().

m_copym(mbuf, offset, len, how)

Make a copy of an mbuf chain starting offset bytes from the beginning, continuing for len bytes.

If len is M_COPYALL, copy to the end of the mbuf chain. Note: The copy is read-only, because

the mbuf clusters are not copied, only their reference counts are incremented.

m_copypacket(mbuf, how)

Copy an entire packet including header, which must be present. This is an optimized version of

the common case m_copym(mbuf, 0, M_COPYALL, how). Note: the copy is read-only, because

the mbuf clusters are not copied, only their reference counts are incremented.

m_dup(mbuf, how)

Copy a packet header mbuf chain into a completely new mbuf chain, including copying any mbuf

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

clusters. Use this instead of m_copypacket() when you need a writable copy of an mbuf chain.

m_copydata(mbuf, offset, len, buf)

Copy data from an mbuf chain starting off bytes from the beginning, continuing for len bytes, into

the indicated buffer buf.

m_copyback(mbuf, offset, len, buf)

Copy len bytes from the buffer buf back into the indicated mbuf chain, starting at offset bytes

from the beginning of the mbuf chain, extending the mbuf chain if necessary. Note: It does not

allocate any mbuf clusters, just adds mbufs to the mbuf chain. It is safe to set offset beyond the

current mbuf chain end: zeroed mbufs will be allocated to fill the space.

m_length(mbuf, last)

Return the length of the mbuf chain, and optionally a pointer to the last mbuf.

m_dup_pkthdr(to, from, how)

Upon the function’s completion, the mbuf to will contain an identical copy of from->m_pkthdr

and the per-packet attributes found in the mbuf chain from. The mbuf from must have the flag

M_PKTHDR initially set, and to must be empty on entry.

m_move_pkthdr(to, from)

Move m_pkthdr and the per-packet attributes from the mbuf chain from to the mbuf to. The mbuf

from must have the flag M_PKTHDR initially set, and to must be empty on entry. Upon the

function’s completion, from will have the flag M_PKTHDR and the per-packet attributes cleared.

m_fixhdr(mbuf)

Set the packet-header length to the length of the mbuf chain.

m_devget(buf, len, offset, ifp, copy)

Copy data from a device local memory pointed to by buf to an mbuf chain. The copy is done

using a specified copy routine copy, or bcopy() if copy is NULL.

m_cat(m, n)

Concatenate n to m. Both mbuf chains must be of the same type. n is not guaranteed to be valid

after m_cat() returns. m_cat() does not update any packet header fields or free mbuf tags.

m_catpkt(m, n)

A variant of m_cat() that operates on packets. Both m and n must contain packet headers. n is not

guaranteed to be valid after m_catpkt() returns.

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

m_split(mbuf, len, how)

Partition an mbuf chain in two pieces, returning the tail: all but the first len bytes. In case of

failure, it returns NULL and attempts to restore the mbuf chain to its original state.

m_apply(mbuf, off, len, f, arg)

Apply a function to an mbuf chain, at offset off, for length len bytes. Typically used to avoid calls

to m_pullup() which would otherwise be unnecessary or undesirable. arg is a convenience

argument which is passed to the callback function f.

Each time f() is called, it will be passed arg, a pointer to the data in the current mbuf, and the

length len of the data in this mbuf to which the function should be applied.

The function should return zero to indicate success; otherwise, if an error is indicated, then

m_apply() will return the error and stop iterating through the mbuf chain.

m_getptr(mbuf, loc, off)

Return a pointer to the mbuf containing the data located at loc bytes from the beginning of the

mbuf chain. The corresponding offset into the mbuf will be stored in *off.

m_defrag(m0, how)

Defragment an mbuf chain, returning the shortest possible chain of mbufs and clusters. If

allocation fails and this can not be completed, NULL will be returned and the original chain will

be unchanged. Upon success, the original chain will be freed and the new chain will be returned.

how should be either M_WAITOK or M_NOWAIT, depending on the caller’s preference.

This function is especially useful in network drivers, where certain long mbuf chains must be

shortened before being added to TX descriptor lists.

m_collapse(m0, how, maxfrags)

Defragment an mbuf chain, returning a chain of at most maxfrags mbufs and clusters. If

allocation fails or the chain cannot be collapsed as requested, NULL will be returned, with the

original chain possibly modified. As with m_defrag(), how should be one of M_WAITOK or

M_NOWAIT.

m_unshare(m0, how)

Create a version of the specified mbuf chain whose contents can be safely modified without

affecting other users. If allocation fails and this operation can not be completed, NULL will be

returned. The original mbuf chain is always reclaimed and the reference count of any shared mbuf

clusters is decremented. how should be either M_WAITOK or M_NOWAIT, depending on the

caller’s preference. As a side-effect of this process the returned mbuf chain may be compacted.

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

This function is especially useful in the transmit path of network code, when data must be

encrypted or otherwise altered prior to transmission.

HARDWARE-ASSISTED CHECKSUM CALCULATION
This section currently applies to TCP/IP only. In order to save the host CPU resources, computing

checksums is offloaded to the network interface hardware if possible. The m_pkthdr member of the

leading mbuf of a packet contains two fields used for that purpose, int csum_flags and int csum_data.

The meaning of those fields depends on the direction a packet flows in, and on whether the packet is

fragmented. Henceforth, csum_flags or csum_data of a packet will denote the corresponding field of the

m_pkthdr member of the leading mbuf in the mbuf chain containing the packet.

On output, checksum offloading is attempted after the outgoing interface has been determined for a

packet. The interface-specific field ifnet.if_data.ifi_hwassist (see ifnet(9)) is consulted for the

capabilities of the interface to assist in computing checksums. The csum_flags field of the packet header

is set to indicate which actions the interface is supposed to perform on it. The actions unsupported by

the network interface are done in the software prior to passing the packet down to the interface driver;

such actions will never be requested through csum_flags.

The flags demanding a particular action from an interface are as follows:

CSUM_IP The IP header checksum is to be computed and stored in the corresponding field of

the packet. The hardware is expected to know the format of an IP header to

determine the offset of the IP checksum field.

CSUM_TCP The TCP checksum is to be computed. (See below.)

CSUM_UDP

The UDP checksum is to be computed. (See below.)

Should a TCP or UDP checksum be offloaded to the hardware, the field csum_data will contain the byte

offset of the checksum field relative to the end of the IP header. In this case, the checksum field will be

initially set by the TCP/IP module to the checksum of the pseudo header defined by the TCP and UDP

specifications.

On input, an interface indicates the actions it has performed on a packet by setting one or more of the

following flags in csum_flags associated with the packet:

CSUM_IP_CHECKED The IP header checksum has been computed.

CSUM_IP_VALID The IP header has a valid checksum. This flag can appear only in

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

combination with CSUM_IP_CHECKED.

CSUM_DATA_VALID

The checksum of the data portion of the IP packet has been computed and

stored in the field csum_data in network byte order.

CSUM_PSEUDO_HDR

Can be set only along with CSUM_DATA_VALID to indicate that the IP

data checksum found in csum_data allows for the pseudo header defined

by the TCP and UDP specifications. Otherwise the checksum of the

pseudo header must be calculated by the host CPU and added to

csum_data to obtain the final checksum to be used for TCP or UDP

validation purposes.

If a particular network interface just indicates success or failure of TCP or UDP checksum validation

without returning the exact value of the checksum to the host CPU, its driver can mark

CSUM_DATA_VALID and CSUM_PSEUDO_HDR in csum_flags, and set csum_data to 0xFFFF

hexadecimal to indicate a valid checksum. It is a peculiarity of the algorithm used that the Internet

checksum calculated over any valid packet will be 0xFFFF as long as the original checksum field is

included.

STRESS TESTING
When running a kernel compiled with the option MBUF_STRESS_TEST, the following

sysctl(8)-controlled options may be used to create various failure/extreme cases for testing of network

drivers and other parts of the kernel that rely on mbufs.

net.inet.ip.mbuf_frag_size

Causes ip_output() to fragment outgoing mbuf chains into fragments of the specified size. Setting

this variable to 1 is an excellent way to test the long mbuf chain handling ability of network

drivers.

kern.ipc.m_defragrandomfailures

Causes the function m_defrag() to randomly fail, returning NULL. Any piece of code which uses

m_defrag() should be tested with this feature.

RETURN VALUES
See above.

SEE ALSO
ifnet(9), mbuf_tags(9)

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

S. J. Leffler, W. N. Joy, R. S. Fabry, and M. J. Karels, "Networking Implementation Notes", 4.4BSD

System Manager’s Manual (SMM).

HISTORY
Mbufs appeared in an early version of BSD. Besides being used for network packets, they were used to

store various dynamic structures, such as routing table entries, interface addresses, protocol control

blocks, etc. In more recent FreeBSD use of mbufs is almost entirely limited to packet storage, with

uma(9) zones being used directly to store other network-related memory.

Historically, the mbuf allocator has been a special-purpose memory allocator able to run in interrupt

contexts and allocating from a special kernel address space map. As of FreeBSD 5.3, the mbuf allocator

is a wrapper around uma(9), allowing caching of mbufs, clusters, and mbuf + cluster pairs in per-CPU

caches, as well as bringing other benefits of slab allocation.

AUTHORS
The original mbuf manual page was written by Yar Tikhiy. The uma(9) mbuf allocator was written by

Bosko Milekic.

MBUF(9) FreeBSD Kernel Developer’s Manual MBUF(9)

FreeBSD 14.2-RELEASE December 28, 2023 FreeBSD 14.2-RELEASE

