
NAME
mbuf_tags - a framework for generic packet attributes

SYNOPSIS
#include <sys/mbuf.h>

struct m_tag *

m_tag_alloc(uint32_t cookie, uint16_t type, int len, int wait);

struct m_tag *

m_tag_copy(struct m_tag *t, int how);

int

m_tag_copy_chain(struct mbuf *to, const struct mbuf *from, int how);

void

m_tag_delete(struct mbuf *m, struct m_tag *t);

void

m_tag_delete_chain(struct mbuf *m, struct m_tag *t);

void

m_tag_delete_nonpersistent(struct mbuf *m);

struct m_tag *

m_tag_find(struct mbuf *m, uint16_t type, struct m_tag *start);

struct m_tag *

m_tag_first(struct mbuf *m);

void

m_tag_free(struct m_tag *t);

struct m_tag *

m_tag_get(uint16_t type, int len, int wait);

void

m_tag_init(struct mbuf *m);

struct m_tag *

MBUF_TAGS(9) FreeBSD Kernel Developer’s Manual MBUF_TAGS(9)

FreeBSD 14.0-RELEASE-p6 December 28, 2021 FreeBSD 14.0-RELEASE-p6



m_tag_locate(struct mbuf *m, uint32_t cookie, uint16_t type, struct m_tag *t);

struct m_tag *

m_tag_next(struct mbuf *m, struct m_tag *t);

void

m_tag_prepend(struct mbuf *m, struct m_tag *t);

void

m_tag_unlink(struct mbuf *m, struct m_tag *t);

DESCRIPTION
Mbuf tags allow additional meta-data to be associated with in-flight packets by providing a mechanism

for the tagging of additional kernel memory onto packet header mbufs. Tags are maintained in chains

off of the mbuf(9) header, and maintained using a series of API calls to allocate, search, and delete tags.

Tags are identified using an ID and cookie that uniquely identify a class of data tagged onto the packet,

and may contain an arbitrary amount of additional storage. Typical uses of mbuf tags include

Mandatory Access Control (MAC) labels as described in mac(9), IPsec policy information as described

in ipsec(4), and packet filter tags used by pf(4).

Tags will be maintained across a variety of operations, including the copying of packet headers using

facilities such as M_COPY_PKTHDR() and M_MOVE_PKTHDR(). Any tags associated with an mbuf

header will be automatically freed when the mbuf is freed, although some subsystems will wish to delete

the tags prior to that time.

Packet tags are used by different kernel APIs to keep track of operations done or scheduled to happen to

packets. Each packet tag can be distinguished by its type and cookie. The cookie is used to identify a

specific module or API. The packet tags are attached to mbuf packet headers.

The first sizeof(struct m_tag) bytes of a tag contain a struct m_tag:

struct m_tag {

SLIST_ENTRY(m_tag) m_tag_link; /* List of packet tags */

uint16_t m_tag_id; /* Tag ID */

uint16_t m_tag_len; /* Length of data */

uint32_t m_tag_cookie; /* ABI/Module ID */

void (*m_tag_free)(struct m_tag *);

};

The m_tag_link field is used to link tags together (see queue(3) for more details). The m_tag_id,

MBUF_TAGS(9) FreeBSD Kernel Developer’s Manual MBUF_TAGS(9)

FreeBSD 14.0-RELEASE-p6 December 28, 2021 FreeBSD 14.0-RELEASE-p6



m_tag_len and m_tag_cookie fields are set to type, length, and cookie, respectively. m_tag_free points

to m_tag_free_default(). Following this structure are m_tag_len bytes of space that can be used to store

tag-specific information. Addressing this data region may be tricky. A safe way is embedding struct

m_tag into a private data structure, as follows:

struct foo {

struct m_tag tag;

...

};

struct foo *p = (struct foo *)m_tag_alloc(...);

struct m_tag *mtag = &p->tag;

Note that OpenBSD does not support cookies, it needs m_tag_id to be globally unique. To keep

compatibility with OpenBSD, a cookie MTAG_ABI_COMPAT is provided along with some

compatibility functions. When writing an OpenBSD compatible code, one should be careful not to take

already used tag type. Tag types are defined in <sys/mbuf.h>.

Packet Tag Manipulation Functions
m_tag_alloc(cookie, type, len, wait)

Allocate a new tag of type type and cookie cookie with len bytes of space following the tag header

itself. The wait argument is passed directly to malloc(9). If successful, m_tag_alloc() returns a

memory buffer of (len + sizeof(struct m_tag)) bytes. Otherwise, NULL is returned. A

compatibility function m_tag_get() is also provided.

m_tag_copy(tag, how)

Allocate a copy of tag. The how argument is passed directly to m_tag_alloc(). The return values

are the same as in m_tag_alloc().

m_tag_copy_chain(tombuf, frommbuf, how)

Allocate and copy all tags from mbuf frommbuf to mbuf tombuf. Returns 1 on success, and 0 on

failure. In the latter case, mbuf tombuf loses all its tags, even previously present.

m_tag_delete(mbuf, tag)

Remove tag from mbuf’s list and free it.

m_tag_delete_chain(mbuf, tag)

Remove and free a packet tag chain, starting from tag. If tag is NULL, all tags are deleted.

m_tag_delete_nonpersistent(mbuf)

Traverse mbuf’s tags and delete those which do not have the MTAG_PERSISTENT flag set.

MBUF_TAGS(9) FreeBSD Kernel Developer’s Manual MBUF_TAGS(9)

FreeBSD 14.0-RELEASE-p6 December 28, 2021 FreeBSD 14.0-RELEASE-p6



m_tag_first(mbuf)

Return the first tag associated with mbuf.

m_tag_free(tag)

Free tag using its m_tag_free method. The m_tag_free_default() function is used by default.

m_tag_init(mbuf)

Initialize the tag storage for packet mbuf.

m_tag_locate(mbuf, cookie, type, tag)

Search for a tag defined by type and cookie in mbuf, starting from position specified by tag. If the

latter is NULL, then search through the whole list. Upon success, a pointer to the first found tag is

returned. In either case, NULL is returned. A compatibility function m_tag_find() is also

provided.

m_tag_next(mbuf, tag)

Return tag next to tag in mbuf. If absent, NULL is returned.

m_tag_prepend(mbuf, tag)

Add the new tag tag at the head of the tag list for packet mbuf.

m_tag_unlink(mbuf, tag)

Remove tag tag from the list of tags of packet mbuf.

CODE REFERENCES
The tag-manipulating code is contained in the file sys/kern/uipc_mbuf2.c. Inlined functions are defined

in <sys/mbuf.h>.

SEE ALSO
queue(3), mbuf(9)

HISTORY
The packet tags first appeared in OpenBSD 2.9 and were written by Angelos D. Keromytis

<angelos@openbsd.org>.

MBUF_TAGS(9) FreeBSD Kernel Developer’s Manual MBUF_TAGS(9)

FreeBSD 14.0-RELEASE-p6 December 28, 2021 FreeBSD 14.0-RELEASE-p6


