
NAME
mac_get_file, mac_get_link, mac_get_fd, mac_get_peer, mac_get_pid, mac_get_proc - get the label of a

file, socket, socket peer or process

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/mac.h>

int

mac_get_file(const char *path, mac_t label);

int

mac_get_link(const char *path, mac_t label);

int

mac_get_fd(int fd, mac_t label);

int

mac_get_peer(int fd, mac_t label);

int

mac_get_pid(pid_t pid, mac_t label);

int

mac_get_proc(mac_t label);

DESCRIPTION
The mac_get_file() system call returns the label associated with a file specified by pathname. The

mac_get_link() function is the same as mac_get_file(), except that it does not follow symlinks.

The mac_get_fd() system call returns the label associated with an object referenced by the specified file

descriptor. Note that in the case of a file system socket, the label returned will be the socket label, which

may be different from the label of the on-disk node acting as a rendezvous for the socket. The

mac_get_peer() system call returns the label associated with the remote endpoint of a socket; the exact

semantics of this call will depend on the protocol domain, communications type, and endpoint; typically

this label will be cached when a connection-oriented protocol instance is first set up, and is undefined

for datagram protocols.

MAC_GET(3) FreeBSD Library Functions Manual MAC_GET(3)

FreeBSD 14.0-RELEASE-p6 December 21, 2001 FreeBSD 14.0-RELEASE-p6



The mac_get_pid() and mac_get_proc() system calls return the process label associated with an arbitrary

process ID, or the current process.

Label storage for use with these calls must first be allocated and prepared using the mac_prepare(3)

functions. When an application is done using a label, the memory may be returned using mac_free(3).

ERRORS
[EACCES] A component of path is not searchable, or MAC read access to the file is denied.

[EINVAL] The requested label operation is not valid for the object referenced by fd.

[ENAMETOOLONG]

The pathname pointed to by path exceeds PATH_MAX, or a component of the

pathname exceeds NAME_MAX.

[ENOENT] A component of path does not exist.

[ENOMEM] Insufficient memory is available to allocate a new MAC label structure.

[ENOTDIR] A component of path is not a directory.

SEE ALSO
mac(3), mac_free(3), mac_prepare(3), mac_set(3), mac_text(3), posix1e(3), mac(4), mac(9)

STANDARDS
POSIX.1e is described in IEEE POSIX.1e draft 17. Discussion of the draft continues on the cross-

platform POSIX.1e implementation mailing list. To join this list, see the FreeBSD POSIX.1e

implementation page for more information.

HISTORY
Support for Mandatory Access Control was introduced in FreeBSD 5.0 as part of the TrustedBSD

Project.

MAC_GET(3) FreeBSD Library Functions Manual MAC_GET(3)

FreeBSD 14.0-RELEASE-p6 December 21, 2001 FreeBSD 14.0-RELEASE-p6


