
NAME
mac_prepare, mac_prepare_type, mac_prepare_file_label, mac_prepare_ifnet_label,
mac_prepare_process_label - allocate appropriate storage for mac_t

SYNOPSIS
#include <sys/mac.h>

int

mac_prepare(mac_t *mac, const char *elements);

int

mac_prepare_type(mac_t *mac, const char *name);

int

mac_prepare_file_label(mac_t *mac);

int

mac_prepare_ifnet_label(mac_t *mac);

int

mac_prepare_process_label(mac_t *mac);

DESCRIPTION
The mac_prepare family of functions allocates the appropriate amount of storage and initializes *mac

for use by mac_get(3). When the resulting label is passed into the mac_get(3) functions, the kernel will

attempt to fill in the label elements specified when the label was prepared. Elements are specified in a

nul-terminated string, using commas to delimit fields. Element names may be prefixed with the ‘?’

character to indicate that a failure by the kernel to retrieve that element should not be considered fatal.

The mac_prepare() function accepts a list of policy names as a parameter, and allocates the storage to fit

those label elements accordingly. The remaining functions in the family make use of system defaults

defined in mac.conf(5) instead of an explicit elements argument, deriving the default from the specified

object type.

mac_prepare_type() allocates the storage to fit an object label of the type specified by the name

argument. The mac_prepare_file_label(), mac_prepare_ifnet_label(), and mac_prepare_process_label()
functions are equivalent to invocations of mac_prepare_type() with arguments of "file", "ifnet", and

"process" respectively.

RETURN VALUES

MAC_PREPARE(3) FreeBSD Library Functions Manual MAC_PREPARE(3)

FreeBSD 14.0-RELEASE-p11 August 22, 2003 FreeBSD 14.0-RELEASE-p11



Upon successful completion, the value 0 is returned; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

SEE ALSO
mac(3), mac_free(3), mac_get(3), mac_is_present(3), mac_set(3), mac(4), mac.conf(5), maclabel(7)

STANDARDS
POSIX.1e is described in IEEE POSIX.1e draft 17. Discussion of the draft continues on the cross-

platform POSIX.1e implementation mailing list. To join this list, see the FreeBSD POSIX.1e

implementation page for more information.

HISTORY
Support for Mandatory Access Control was introduced in FreeBSD 5.0 as part of the TrustedBSD

Project. Support for generic object types first appeared in FreeBSD 5.2.

MAC_PREPARE(3) FreeBSD Library Functions Manual MAC_PREPARE(3)

FreeBSD 14.0-RELEASE-p11 August 22, 2003 FreeBSD 14.0-RELEASE-p11


