
NAME
make_dev, make_dev_cred, make_dev_credf, make_dev_p, make_dev_s, make_dev_alias,

make_dev_alias_p, destroy_dev, destroy_dev_sched, destroy_dev_sched_cb, destroy_dev_drain,

dev_depends - manage cdev’s and DEVFS registration for devices

SYNOPSIS
#include <sys/param.h>
#include <sys/conf.h>

void

make_dev_args_init(struct make_dev_args *args);

int

make_dev_s(struct make_dev_args *args, struct cdev **cdev, const char *fmt, ...);

int

make_dev_alias_p(int flags, struct cdev **cdev, struct cdev *pdev, const char *fmt, ...);

void

destroy_dev(struct cdev *dev);

void

destroy_dev_sched(struct cdev *dev);

void

destroy_dev_sched_cb(struct cdev *dev, void (*cb)(void *), void *arg);

void

destroy_dev_drain(struct cdevsw *csw);

void

dev_depends(struct cdev *pdev, struct cdev *cdev);

LEGACY INTERFACES

struct cdev *

make_dev(struct cdevsw *cdevsw, int unit, uid_t uid, gid_t gid, int perms, const char *fmt, ...);

struct cdev *

make_dev_cred(struct cdevsw *cdevsw, int unit, struct ucred *cr, uid_t uid, gid_t gid, int perms,

const char *fmt, ...);

MAKE_DEV(9) FreeBSD Kernel Developer’s Manual MAKE_DEV(9)

FreeBSD 14.2-RELEASE March 2, 2016 FreeBSD 14.2-RELEASE

struct cdev *

make_dev_credf(int flags, struct cdevsw *cdevsw, int unit, struct ucred *cr, uid_t uid, gid_t gid,

int perms, const char *fmt, ...);

int

make_dev_p(int flags, struct cdev **cdev, struct cdevsw *devsw, struct ucred *cr, uid_t uid, gid_t gid,

int mode, const char *fmt, ...);

struct cdev *

make_dev_alias(struct cdev *pdev, const char *fmt, ...);

DESCRIPTION
The make_dev_s() function creates a cdev structure for a new device, which is returned into the cdev

argument. It also notifies devfs(5) of the presence of the new device, that causes corresponding nodes to

be created. Besides this, a devctl(4) notification is sent. The function takes the structure struct

make_dev_args args, which specifies the parameters for the device creation:

struct make_dev_args {

size_t mda_size;

int mda_flags;

struct cdevsw *mda_devsw;

struct ucred *mda_cr;

uid_t mda_uid;

gid_t mda_gid;

int mda_mode;

int mda_unit;

void *mda_si_drv1;

void *mda_si_drv2;

};

Before use and filling with the desired values, the structure must be initialized by the

make_dev_args_init() function, which ensures that future kernel interface expansion does not affect

driver source code or binary interface.

The created device will be owned by args.mda_uid, with the group ownership as args.mda_gid. The

name is the expansion of fmt and following arguments as printf(9) would print it. The name determines

its path under /dev or other devfs(5) mount point and may contain slash ‘/’ characters to denote

subdirectories. The permissions of the file specified in args.mda_mode are defined in <sys/stat.h>:

#define S_IRWXU 0000700 /* RWX mask for owner */

#define S_IRUSR 0000400 /* R for owner */

MAKE_DEV(9) FreeBSD Kernel Developer’s Manual MAKE_DEV(9)

FreeBSD 14.2-RELEASE March 2, 2016 FreeBSD 14.2-RELEASE

#define S_IWUSR 0000200 /* W for owner */

#define S_IXUSR 0000100 /* X for owner */

#define S_IRWXG 0000070 /* RWX mask for group */

#define S_IRGRP 0000040 /* R for group */

#define S_IWGRP 0000020 /* W for group */

#define S_IXGRP 0000010 /* X for group */

#define S_IRWXO 0000007 /* RWX mask for other */

#define S_IROTH 0000004 /* R for other */

#define S_IWOTH 0000002 /* W for other */

#define S_IXOTH 0000001 /* X for other */

#define S_ISUID 0004000 /* set user id on execution */

#define S_ISGID 0002000 /* set group id on execution */

#define S_ISVTX 0001000 /* sticky bit */

#ifndef _POSIX_SOURCE

#define S_ISTXT 0001000

#endif

The args.mda_cr argument specifies credentials that will be stored in the si_cred member of the

initialized struct cdev.

The args.mda_flags argument alters the operation of make_dev_s.() The following values are currently

accepted:

MAKEDEV_REF reference the created device

MAKEDEV_NOWAIT do not sleep, the call may fail

MAKEDEV_WAITOK allow the function to sleep to satisfy malloc

MAKEDEV_ETERNAL created device will be never destroyed

MAKEDEV_CHECKNAME return an error if the device name is invalid or already exists

Only MAKEDEV_NOWAIT, MAKEDEV_WAITOK and MAKEDEV_CHECKNAME values are

accepted for the make_dev_alias_p() function.

The MAKEDEV_WAITOK flag is assumed if none of MAKEDEV_WAITOK, MAKEDEV_NOWAIT

is specified.

The dev_clone(9) event handler shall specify MAKEDEV_REF flag when creating a device in response

to lookup, to avoid race where the device created is destroyed immediately after devfs_lookup(9) drops

MAKE_DEV(9) FreeBSD Kernel Developer’s Manual MAKE_DEV(9)

FreeBSD 14.2-RELEASE March 2, 2016 FreeBSD 14.2-RELEASE

his reference to cdev.

The MAKEDEV_ETERNAL flag allows the kernel to not acquire some locks when translating system

calls into the cdevsw methods calls. It is responsibility of the driver author to make sure that

destroy_dev() is never called on the returned cdev. For the convenience, use the

MAKEDEV_ETERNAL_KLD flag for the code that can be compiled into kernel or loaded (and

unloaded) as loadable module.

A panic will occur if the MAKEDEV_CHECKNAME flag is not specified and the device name is

invalid or already exists.

The make_dev_p() use of the form

struct cdev *dev;

int res;

res = make_dev_p(flags, &dev, cdevsw, cred, uid, gid, perms, name);

is equivalent to the code

struct cdev *dev;

struct make_dev_args args;

int res;

make_dev_args_init(&args);

args.mda_flags = flags;

args.mda_devsw = cdevsw;

args.mda_cred = cred;

args.mda_uid = uid;

args.mda_gid = gid;

args.mda_mode = perms;

res = make_dev_s(&args, &dev, name);

Similarly, the make_dev_credf() function call is equivalent to

(void) make_dev_s(&args, &dev, name);

In other words, make_dev_credf() does not allow the caller to obtain the return value, and in kernels

compiled with the INVARIANTS options, the function asserts that the device creation succeeded.

The make_dev_cred() function is equivalent to the call

make_dev_credf(0, cdevsw, unit, cr, uid, gid, perms, fmt, ...);

MAKE_DEV(9) FreeBSD Kernel Developer’s Manual MAKE_DEV(9)

FreeBSD 14.2-RELEASE March 2, 2016 FreeBSD 14.2-RELEASE

The make_dev() function call is the same as

make_dev_credf(0, cdevsw, unit, NULL, uid, gid, perms, fmt, ...);

The make_dev_alias_p() function takes the returned cdev from make_dev() and makes another (aliased)

name for this device. It is an error to call make_dev_alias_p() prior to calling make_dev().

The make_dev_alias() function is similar to make_dev_alias_p() but it returns the resulting aliasing

*cdev and may not return an error.

The cdev returned by make_dev_s() and make_dev_alias_p() has two fields, si_drv1 and si_drv2, that

are available to store state. Both fields are of type void *, and can be initialized simultaneously with the

cdev allocation by filling args.mda_si_drv1 and args.mda_si_drv2 members of the make_dev_s()

argument structure, or filled after the cdev is allocated, if using legacy interfaces. In the latter case, the

driver should handle the race of accessing uninitialized si_drv1 and si_drv2 itself. These are designed to

replace the unit argument to make_dev(), which can be obtained with dev2unit().

The destroy_dev() function takes the returned cdev from make_dev() and destroys the registration for

that device. The notification is sent to devctl(4) about the destruction event. Do not call destroy_dev()

on devices that were created with make_dev_alias().

The dev_depends() function establishes a parent-child relationship between two devices. The net effect

is that a destroy_dev() of the parent device will also result in the destruction of the child device(s), if any

exist. A device may simultaneously be a parent and a child, so it is possible to build a complete

hierarchy.

The destroy_dev_sched_cb() function schedules execution of the destroy_dev() for the specified cdev in

the safe context. After destroy_dev() is finished, and if the supplied cb is not NULL, the callback cb is

called, with argument arg. The destroy_dev_sched() function is the same as

destroy_dev_sched_cb(cdev, NULL, NULL);

The d_close() driver method cannot call destroy_dev() directly. Doing so causes deadlock when

destroy_dev() waits for all threads to leave the driver methods. Also, because destroy_dev() sleeps, no

non-sleepable locks may be held over the call. The destroy_dev_sched() family of functions overcome

these issues.

The device driver may call the destroy_dev_drain() function to wait until all devices that have supplied

csw as cdevsw, are destroyed. This is useful when driver knows that destroy_dev_sched() is called for

all instantiated devices, but need to postpone module unload until destroy_dev() is actually finished for

MAKE_DEV(9) FreeBSD Kernel Developer’s Manual MAKE_DEV(9)

FreeBSD 14.2-RELEASE March 2, 2016 FreeBSD 14.2-RELEASE

all of them.

RETURN VALUES
If successful, make_dev_s() and make_dev_p() will return 0, otherwise they will return an error. If

successful, make_dev_credf() will return a valid cdev pointer, otherwise it will return NULL.

ERRORS
The make_dev_s(), make_dev_p() and make_dev_alias_p() calls will fail and the device will be not

registered if:

[ENOMEM] The MAKEDEV_NOWAIT flag was specified and a memory allocation request

could not be satisfied.

[ENAMETOOLONG]

The MAKEDEV_CHECKNAME flag was specified and the provided device

name is longer than SPECNAMELEN.

[EINVAL] The MAKEDEV_CHECKNAME flag was specified and the provided device

name is empty, contains a "." or ".." path component or ends with ‘/’.

[EINVAL] The MAKEDEV_CHECKNAME flag was specified and the provided device

name contains invalid characters.

[EEXIST] The MAKEDEV_CHECKNAME flag was specified and the provided device

name already exists.

SEE ALSO
devctl(4), devfs(5), dev_clone(9)

HISTORY
The make_dev() and destroy_dev() functions first appeared in FreeBSD 4.0. The function

make_dev_alias() first appeared in FreeBSD 4.1. The function dev_depends() first appeared in

FreeBSD 5.0. The functions make_dev_credf(), destroy_dev_sched(), destroy_dev_sched_cb() first

appeared in FreeBSD 7.0. The function make_dev_p() first appeared in FreeBSD 8.2. The function

make_dev_s() first appeared in FreeBSD 11.0.

MAKE_DEV(9) FreeBSD Kernel Developer’s Manual MAKE_DEV(9)

FreeBSD 14.2-RELEASE March 2, 2016 FreeBSD 14.2-RELEASE

