
NAME
makerules - system programmers guide for compiling projects on different platforms

SYNOPSIS
SRCROOT= ..
RULESDIR= RULES
include $(SRCROOT)/$(RULESDIR)/rules.top
local defines are here

include $(SRCROOT)/$(RULESDIR)/rules.*

See chapter CURRENTLY SUPPORTED TARGET TYPES for possible values of rules.*.

DESCRIPTION
Makerules is a set of rules that allows compiling of structured projects with small and uniformly

structured makefiles. All rules are located in a central directory. Compiling the projects on different

platforms can be done simultaneously without the need to modify any of the makefiles that are located

in the projects directories.

Makerules is a set of high level portability tools superior to autoconf and easier to use.

Three make programs are currently supported: Sunpro make, GNU make and smake. If you want to

add support for other make programs, read the sections about the minimum requirements for a make

program and about the structure of the make rule system.

This manual will help programmers who need to make modifications on the make rule system itself. If

you want to know something on how to use the have a look at makefile system makefiles(5).

The main design goal was to have no definition on more than place in the make rules. This implies that

system programmers who want to add or modify rules must follow this goal in order not to destroy

functionality in other places.

The visible result for the user is a set of small and easy to read makefiles, each located in the project’s

leaf directory and therefore called leaf-makefile.

Each of these leaf-makefiles, in fact contains no rule at all. It simply defines some macros for the

make-program and includes two files from a central make rule depository. These included files define

the rules that are needed to compile the project.

Each leaf-makefile is formed in a really simple way:

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

+o It first defines two macros that define the relative location of the project’s root directory and the

name of the directory that contains the complete set of of rules and then includes the rule file

rules.top from the directory that forms the central rule depository. You only have to edit the macro

SRCROOT to reflect the relative location of the project’s root directory.

+o The next part of a leaf-makefile defines macros that describe the target and the source. You can

only have one target per leaf-makefile. Of course, there may be many source files, that are needed

to create that target. If you want to make more than one target in a specific directory, you have to

put more than one makefile into that directory. This is the part of a makefile that describes a

unique target. Edit this part to contain all source files, all local include files and all non global

compile time flags that are needed for your target. For a typical target this is as simple as filling in

a form.

+o Each leaf-makefile finally includes a file from the rules directory that contains rules for the

appropriate type of target that is to be made from this leaf-makefile.

The makefile in each directory has to be called Makefile. If you want to have more than one makefile

in a specific directory, you have to choose different names for the other makefiles.

Currently Supported Target Types
There are rules for the following type of targets:

commands The make rules for user level commands like cat, ls etc. are located in the file

rules.cmd

drivers The make rules for device drivers are located in the file rules.drv

libraries The make rules for non shared libraries are located in the file rules.lib

shared libraries The make rules for shared libraries are located in the file rules.shl

localized files The make rules for localized files are located in the file rules.loc

nonlocalized files The make rules for non localized files are located in the file rules.aux

shell scripts The make rules for shell scripts (a variant of localized files) are located in the

file rules.scr

manual pages The make rules for manual pages (a variant of localized files) are located in

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

the file rules.man

diverted makefiles The make rules for projects that need to have more than one makefile in a

specific directory are located in the file rules.mks It contains a rule that diverts

to the listed sub makefiles. Each sub makefile may be of any type.

directories The make rules for sub directories are located in the file rules.dir

Minimum Requirements For A Make Program
The make rules currently have support for Sunpro make, GNU make and smake. If you like to add

support for other make programs, they need to have some minimal features that go beyond the

capabilities of the standard UNIX make program. BSDmake could be supported if it supports pattern

matching rules correctly.

include The make program must be able to recursively include other files from within

a makefile. The name if the file to include must be allowed to be a macro.

The make program must be able to do this in a way that if the file that should

be included may be a result of make rule. e.g if the file to be included does

not exist or is outdated, it should be built before an attempt is made to actually

include it.

appending to a macro A macro reference of the form:

macro += addval

should append addval to the string that is currently in macro.

suffix macro replacement

A macro reference of the form:

out= $(macro:string1=string2)

should replace a suffix string1 to string2 in all words that are in macro, where

string1 is either a suffix, or a word to be replaced in the macro definition, and

string2 is the replacement suffix or word. String1 and string2 must be

replaced correctly even if they are macros themselves. Words in a macro

value are separated by SPACE, TAB, and escaped NEWLINE characters.

pattern macro replacement

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

A macro reference of the form:

out= $(macro:op%os=np%ns)

should replace a central pattern in macro, where op is the existing (old) prefix

and os is the existing (old) suffix, np and ns are the new prefix and new suffix,

respectively, and the pattern matched by % (a string of zero or more

characters), is carried forward from the value being replaced. For example:

PROGRAM=fabricate
DEBUG= $(PROGRAM:%=tmp/%-g)

sets the value of DEBUG to tmp/fabricate-g. Op, os, np and ns must be

replaced correctly even if they are macros themselves.

Understanding Basic Algorithms
One of the basic algorithms used in the make rule system is needed to set an undefined macro to a

guaranteed default value. Because not all make programs have support for if then else structures, a

different method has to be used.

The method used in make rules is implemented by using suffix macro replacement and pattern macro
replacement.

First, a macro that contains a unique suffix is defined:

Define magic unique cookie
_UNIQ= .XxZzy-

This macro is used for all places where it is necessary to have a macro with a guaranteed default value.

The following example shows the basic algorithm that is used to implement the phrase: If
$(MAKE_NAME) contains a value, then $(XMAKEPROG) will be set to $(MAKE_NAME) else
$(XMAKEPROG) will be set to $(MAKEPROG).

_MAKEPROG= $(_UNIQ)$(MAKE_NAME)
__MAKEPROG= $(_MAKEPROG:$(_UNIQ)=$(MAKEPROG))
XMAKEPROG= $(__MAKEPROG:$(_UNIQ)%=%)

The first line in this example, sets the macro _MAKEPROG to the concatenation of the value of

MAKE_NAME and .XxZzy-. If the macro MAKE_NAME is empty at this time, _MAKEPROG will

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

contain only .XxZzy-.

In the second line, __MAKEPROG is set to the value of _MAKEPROG. If _MAKEPROG contains

only .XxZzy- this implies, that .XxZzy- is the suffix. This suffix is then replaced by the value of

MAKEPROG, in this case __MAKEPROG will contain the unmodified value of MAKEPROG. If

_MAKEPROG contains a concatenation of .XxZzy- and something else, .XxZzy- will not be a suffix,

but a prefix of _MAKEPROG and for this reason __MAKEPROG will contain the unmodified value of

_MAKEPROG, which is a concatenation of .XxZzy- and the value of MAKE_NAME.

In the third line, XMAKEPROG is set to the value of __MAKEPROG. If __MAKEPROG has the

prefix .XxZzy- at this time, .XxZzy- is stripped of.

The Structure in Make Macro names
The names used for make macros are structured in a way that allows one to use grep(1) to look for the

names in the make rules. To allow this, no name must be a substring of another name.

If a command needs options that have to be specified in macros, there is a make macro that is named

XXXFLAGS. This is compliant to usual make file rules. The are internal make macros called

XXXOPTS and XXXOPTX that will be combined for XXXFLAGS:

LDFLAGS= $(LDOPTS) $(LDOPTX)

Where XXXOPTS is the name of the macro that is used internally and XXXOPTX is the name of the

macro that may be used from the command line of the make program. XXXOPTX therefore is used to

append to the content of XXXFLAGS If the value of XXXFLAGS need to be overwritten, XXXOPTS

may be used within the command line flags of the make program.

The file

The Structure Of The Basic Rules in rules.top
RULES/rules.top first includes a rule file that depends on the make program that is used. The name of

this file is RULES/mk-makeprog.id where makeprog has to be replaced by the real name of the

makeprogram e.g. make, gmake, smake. The purpose of this file is to set up a list of macros that

identify the system where the project is currently built. These macros have values that contain only

lower case letters and define:

the processor architecture If two systems run the same operating system, this is a unique value

if a simple user level program will not need to be recompiled in

order to run on the other system. Possible values are sparc,

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

mc68020, pentium. This is the output of uname -p. The value is

stored in P_ARCH.

the kernel architecture If two systems may use the same value for P_ARCH but a heavily

system dependent user level program need to be recompiled in order

to run on the other system, These two systems have different kernel

architectures. This is the output of uname -m. Possible values are

sun3, sun4c, sun4m. The value is stored in K_ARCH.

the machine architecture An outdated macro that is useful only on sun systems. Do not use

this, use P_ARCH instead. This is the output of arch. Possible

values are sun3, sun4. The value is stored in M_ARCH.

the hostname The name of the machine where the compilation takes place. This is

the output of uname -n. The value is stored in HOSTNAME.

the name of the operating system This is the output of uname -s. Possible values are sunos, dgux,

hp-ux, irix. The value is stored in OSNAME.

the release of the operating system

This is the output of uname -r. Possible values are 5.5, 4.1.4. The

value is stored in OSREL.

The next file to be included from RULES/rules.top is RULES/os-operating system.id. It defines the

macros O_ARCH and -O_ARCH and may modify one of the macros that are defined in

RULES/mk-makeprog.id. The macros O_ARCH and -O_ARCH are used to distinguish between

different operating systems. The names of the compiler configuration files have -O_ARCH as a central

part. On some operating systems e.g. SunOS and DG-UX it is necessary to distinguish between

SunOS 4.x and SunOS 5.x or DG-UX 3.x and DG-UX 4.x.

The next file to be included from RULES/rules.top is Defaults. It defines the macros DEFCCOM ,

DEFINCDIRS , LDPATH , RUNPATH , INS_BASE and INS_KBASE. If the definitions have to be

different on different systems, this file may contain a line int the form:

include $(SRCROOT)/Defaults.$(O_ARCH)

The actual definitions then have to be moved into these files.

Next, after setting up some internal defaults, RULES/rules.top includes the compiler configuration file

with the name:

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

$(SRCROOT)/$(RULESDIR)/$(XARCH).rul

This file contains all necessary system dependent stuff that is needed to configure the C-compiler on

the appropriate system. It is a bad idea to create a new one from scratch. Have a look at the other

compiler configuration files and modify a similar file for your needs. Note that there are basically two

criterias to that are important in a compiler configuration file. One is whether the system uses the ELF

header format or not. The other is whether the system uses shared libraries or not.

The Structure Of The Application Specific Rules
The application specific rule files are designed in such a way that they include all necessary stuff that is

needed for that specific task. The application specific rule files are:

$(RULES)/rules.aux Rules for installing non localized auxiliary files.

$(RULES)/rules.cmd Rules for commands like sh.

$(RULES)/rules.dir Rules for sub directories.

$(RULES)/rules.drv Rules for loadable drivers.

$(RULES)/rules.lib Rules for static libraries.

$(RULES)/rules.loc Rules for installing localized auxiliary files.

$(RULES)/rules.man Rules for installing localized manual pages.

$(RULES)/rules.mks Rules for sub makefiles.

$(RULES)/rules.mod Rules for loadable stream modules.

$(RULES)/rules.scr Rules for installing localized shell scripts.

$(RULES)/rules.shl Rules for shared libraries.

Understanding The Structure Of The Make Rule System
To understand the structure of the make rule system while doing changes, try to use the -xM flag in the

smake program. This flag will print out the include dependency list (i.e. a list that tell you which make

rules is included from which other rule).

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

Note that some of the rules are make program dependent. If you want to make changes to these rules

you may need to place the definitions into separate rule files each for the appropriate make program.

Have a look into the RULES directory for some examples.

FILES
.../RULES/*

.../DEFAULTS/*

.../TARGETS/*

.../TEMPLATES/*

SEE ALSO
makefiles(5), make(1), gmake(1), smake(1).

DIAGNOSTICS
Diagnostic messages depend on the make program. Have a look at the appropriate man page.

NOTES
The make rules can be used with Sunpro make, Gnu make and smake. Although Gnu make runs on

many platforms, it has no useful debug output.

Use Sunpro make or smake if you have problems with a makefile. Sunpro make and smake, both have

a -D flag, that allows you to watch the makefiles after the first expansion. Use this option, if you are in

doubt if your makefile gets expanded the right way and if the right rules are included. There is also a

-d option that gives debugging output while make is running. If you want more output, use -dd, -ddd

and so on.

Smake has an option -xM that shows you the include dependency for make rules.

BUGS
None currently known.

Mail bugs and suggestions to schilytools@mlists.in-berlin.de or open a ticket at

https://codeberg.org/schilytools/schilytools/issues.

The mailing list archive may be found at:

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

https://mlists.in-berlin.de/mailman/listinfo/schilytools-mlists.in-berlin.de.

Source Tree Hierarchy
The following outline gives a quick tour through a typical source hierarchy:

.../ root directory of the source tree

Makefile
the top Makefile

Defaults
default definitions for that source tree. System dependent definitions are in .../DEFAULTS/

Targetdirs
a file containing a list of directories that are needed for that project. If the system needs

different target lists depending on the target system architecture , use target specific files in

.../TARGETS/
...

.../RULES/
the location of makefiles (included rules)

rules.top
the mandatory include rules (needed to setup basic rules)

rules.aux
rules needed to install a non localized auxiliary file

rules.cmd
rules needed to make an ordinary command (like /bin/sh)

rules.drv
rules needed to make a device driver

rules.lib
rules needed to make a standard (nonshared) library

rules.loc
rules needed to install a localized auxiliary file

rules.man
rules needed to install a localized manual page

rules.scr
rules needed to install a localized shell script

rules.shl
rules needed to make a shared library

rules.mks
rules needed to make more than one target in a specific directory

rules.dir
rules needed to make targets that are located in sub directories to the current directory

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

...

.../DEFAULTS/
default definitions for various target architectures are located in this directory. Templates for some

architectures can be found in the .../TEMPLATES/ directory.

.../TARGETS/
target list definitions for various target architectures are located in this directory.

.../TEMPLATES/
templates that should be used inside the project (rename to Makefile, if it is the only makefile on

that directory, rename to target.mk, if there is more than one target in that directory)

Defaults
Defaults file for the source root directory

Defaults.linux
Defaults file for linux. This should be installed in the .../DEFAULTS/ directory.

Makefile.root
Makefile for the source root directory

Makefile.aux
Makefile for a non localized auxiliary file

Makefile.cmd
Makefile for an ordinary command (like /bin/sh)

Makefile.lib
Makefile for a standard (nonshared) library

Makefile.loc
Makefile for a localized auxiliary file

Makefile.man
Makefile for a localized manual page

Makefile_de.man
Makefile for a localized manual page in the german locale

Makefile.scr
Makefile for a localized shell script

Makefile.shl
Makefile for a shared library

Makefile.drv
Makefile for a device driver

Makefile.mks
Makefile for more than one target in a specific directory

Makefile.dir
Makefile for targets that are located in sub directories to the current directory

...

.../cmd/
source tree for normal commands

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

Makefile
the makefile for the cmd sub directory

Targetdirs.sun4m
a file containing a list of directories like myprog (see below) that are needed for that specific

architecture.

myprog/
directory where the sources for a specific command are located

Makefile

makefile for myprog

Makefile.man

makefile for the manual page of myprog

mprog.c

source for myprog

mprog.tr

troff source for the manual page of myprog

OBJ/
directory where system specific sub directories are located

sparc-sunos5-cc/
directory for binaries that belong to a specific system

...

...

...

.../lib/
directory where the sources for a libraries are located

Makefile
the makefile for the lib sub directory

Targetdirs.sun4m
a file containing a list of directories like libfoo (see below) that are needed for that specific

architecture.

libfoo/
directory where all source files for libfoo are located

...

.../kernel
directory for kernel modules

Makefile
the makefile for the kernel sub directory

Targetdirs.sun4m
a file containing a list of directories like drv (see below) that are needed for that specific

architecture.

drv/

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

directory where drivers are located

Makefile
the makefile for the drv sub directory

Targetdirs.sun4m
a file containing a list of directories like mydrv (see below) that are needed for that

specific architecture.

mydrv/
source for a specific driver

...

...

.../include
directory for global include files that are used in that project

.../bins
directory for binary programs that are created/needed while compiling the project

sparc-sunos5-cc/
directory for binaries that belong to a specific system

...

.../libs
directory for libraries that are created/needed while compiling the project

sparc-sunos5-cc/
directory for libraries that belong to a specific system

...

.../incs
directory for include files that are created/needed while compiling the project

sparc-sunos5-cc/
directory for include files that belong to a specific system

...

...

AUTHOR
This man page was initially written by Joerg Schilling.

SOURCE DOWNLOAD
The source code for the schily makefile system is included in the schilytools project and may be

retrieved from the schilytools project at Codeberg at

https://codeberg.org/schilytools/schilytools.

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

The download directory is

https://codeberg.org/schilytools/schilytools/releases.

makerules(5L) File Formats makerules(5L)

Joerg Schilling 2022/10/06 makerules(5L)

