FreeBSD manual
download PDF document: perlhacktips.1.pdf
PERLHACKTIPS(1) Perl Programmers Reference Guide PERLHACKTIPS(1)
NAME
perlhacktips - Tips for Perl core C code hacking
DESCRIPTION
This document will help you learn the best way to go about hacking on
the Perl core C code. It covers common problems, debugging, profiling,
and more.
If you haven't read perlhack and perlhacktut yet, you might want to do
that first.
COMMON PROBLEMS
Perl source now permits some specific C99 features which we know are
supported by all platforms, but mostly plays by ANSI C89 rules. You
don't care about some particular platform having broken Perl? I hear
there is still a strong demand for J2EE programmers.
Perl environment problems
o Not compiling with threading
Compiling with threading (-Duseithreads) completely rewrites the
function prototypes of Perl. You better try your changes with
that. Related to this is the difference between "Perl_-less" and
"Perl_-ly" APIs, for example:
Perl_sv_setiv(aTHX_ ...);
sv_setiv(...);
The first one explicitly passes in the context, which is needed for
e.g. threaded builds. The second one does that implicitly; do not
get them mixed. If you are not passing in a aTHX_, you will need
to do a dTHX as the first thing in the function.
See "How multiple interpreters and concurrency are supported" in
perlguts for further discussion about context.
o Not compiling with -DDEBUGGING
The DEBUGGING define exposes more code to the compiler, therefore
more ways for things to go wrong. You should try it.
o Introducing (non-read-only) globals
Do not introduce any modifiable globals, truly global or file
static. They are bad form and complicate multithreading and other
forms of concurrency. The right way is to introduce them as new
interpreter variables, see intrpvar.h (at the very end for binary
compatibility).
Introducing read-only (const) globals is okay, as long as you
verify with e.g. "nm libperl.a|egrep -v ' [TURtr] '" (if your "nm"
has BSD-style output) that the data you added really is read-only.
(If it is, it shouldn't show up in the output of that command.)
If you want to have static strings, make them constant:
o Not exporting your new function
Some platforms (Win32, AIX, VMS, OS/2, to name a few) require any
function that is part of the public API (the shared Perl library)
to be explicitly marked as exported. See the discussion about
embed.pl in perlguts.
o Exporting your new function
The new shiny result of either genuine new functionality or your
arduous refactoring is now ready and correctly exported. So what
could possibly go wrong?
Maybe simply that your function did not need to be exported in the
first place. Perl has a long and not so glorious history of
exporting functions that it should not have.
If the function is used only inside one source code file, make it
static. See the discussion about embed.pl in perlguts.
If the function is used across several files, but intended only for
Perl's internal use (and this should be the common case), do not
export it to the public API. See the discussion about embed.pl in
perlguts.
C99
Starting from 5.35.5 we now permit some C99 features in the core C
source. However, code in dual life extensions still needs to be C89
only, because it needs to compile against earlier version of Perl
running on older platforms. Also note that our headers need to also be
valid as C++, because XS extensions written in C++ need to include
them, hence member structure initialisers can't be used in headers.
C99 support is still far from complete on all platforms we currently
support. As a baseline we can only assume C89 semantics with the
specific C99 features described below, which we've verified work
everywhere. It's fine to probe for additional C99 features and use
them where available, providing there is also a fallback for compilers
that don't support the feature. For example, we use C11 thread local
storage when available, but fall back to POSIX thread specific APIs
otherwise, and we use "char" for booleans if "<stdbool.h>" isn't
available.
Code can use (and rely on) the following C99 features being present
o mixed declarations and code
o 64 bit integer types
For consistency with the existing source code, use the typedefs
"I64" and "U64", instead of using "long long" and "unsigned long
long" directly.
o variadic macros
void greet(char *file, unsigned int line, char *format, ...);
#define logged_greet(...) greet(__FILE__, __LINE__, __VA_ARGS__);
}
o member structure initialisers
But not in headers, as support was only added to C++ relatively
recently.
Hence this is fine in C and XS code, but not headers:
struct message {
char *action;
char *target;
};
struct message mcguffin = {
.target = "member structure initialisers",
.action = "Built"
};
o flexible array members
This is standards conformant:
struct greeting {
unsigned int len;
char message[];
};
However, the source code already uses the "unwarranted chumminess
with the compiler" hack in many places:
struct greeting {
unsigned int len;
char message[1];
};
Strictly it is undefined behaviour accessing beyond "message[0]",
but this has been a commonly used hack since K&R times, and using
it hasn't been a practical issue anywhere (in the perl source or
any other common C code). Hence it's unclear what we would gain
from actively changing to the C99 approach.
o "//" comments
All compilers we tested support their use. Not all humans we tested
support their use.
Code explicitly should not use any other C99 features. For example
o variable length arrays
Not supported by any MSVC, and this is not going to change.
Even "variable" length arrays where the variable is a constant
expression are syntax errors under MSVC.
o C99 types in "<stdint.h>"
Use "PERL_INT_FAST8_T" etc as defined in handy.h
(perl's "sv_catpvf" etc use parser code code in "sv.c", which
supports the "z" modifier, along with perl-specific formats such as
"SVf".)
If you want to use a C99 feature not listed above then you need to do
one of
o Probe for it in Configure, set a variable in config.sh, and add
fallback logic in the headers for platforms which don't have it.
o Write test code and verify that it works on platforms we need to
support, before relying on it unconditionally.
Likely you want to repeat the same plan as we used to get the current
C99 feature set. See the message at
https://markmail.org/thread/odr4fjrn72u2fkpz for the C99 probes we used
before. Note that the two most "fussy" compilers appear to be MSVC and
the vendor compiler on VMS. To date all the *nix compilers have been
far more flexible in what they support.
On *nix platforms, Configure attempts to set compiler flags
appropriately. All vendor compilers that we tested defaulted to C99
(or C11) support. However, older versions of gcc default to C89, or
permit most C99 (with warnings), but forbid declarations in for loops
unless "-std=gnu99" is added. The alternative "-std=c99" might seem
better, but using it on some platforms can prevent "<unistd.h>"
declaring some prototypes being declared, which breaks the build. gcc's
"-ansi" flag implies "-std=c89" so we can no longer set that, hence the
Configure option "-gccansipedantic" now only adds "-pedantic".
The Perl core source code files (the ones at the top level of the
source code distribution) are automatically compiled with as many as
possible of the "-std=gnu99", "-pedantic", and a selection of "-W"
flags (see cflags.SH). Files in ext/ dist/ cpan/ etc are compiled with
the same flags as the installed perl would use to compile XS
extensions.
Basically, it's safe to assume that Configure and cflags.SH have picked
the best combination of flags for the version of gcc on the platform,
and attempting to add more flags related to enforcing a C dialect will
cause problems either locally, or on other systems that the code is
shipped to.
We believe that the C99 support in gcc 3.1 is good enough for us, but
we don't have a 19 year old gcc handy to check this :-) If you have
ancient vendor compilers that don't default to C99, the flags you might
want to try are
AIX "-qlanglvl=stdc99"
HP/UX
"-AC99"
Solaris
"-xc99"
Portability problems
The following are common causes of compilation and/or execution
failures, not common to Perl as such. The C FAQ is good bedtime
Do not assume an operating system indicates a certain compiler.
o Casting pointers to integers or casting integers to pointers
void castaway(U8* p)
{
IV i = p;
or
void castaway(U8* p)
{
IV i = (IV)p;
Both are bad, and broken, and unportable. Use the PTR2IV() macro
that does it right. (Likewise, there are PTR2UV(), PTR2NV(),
INT2PTR(), and NUM2PTR().)
o Casting between function pointers and data pointers
Technically speaking casting between function pointers and data
pointers is unportable and undefined, but practically speaking it
seems to work, but you should use the FPTR2DPTR() and DPTR2FPTR()
macros. Sometimes you can also play games with unions.
o Assuming sizeof(int) == sizeof(long)
There are platforms where longs are 64 bits, and platforms where
ints are 64 bits, and while we are out to shock you, even platforms
where shorts are 64 bits. This is all legal according to the C
standard. (In other words, "long long" is not a portable way to
specify 64 bits, and "long long" is not even guaranteed to be any
wider than "long".)
Instead, use the definitions IV, UV, IVSIZE, I32SIZE, and so forth.
Avoid things like I32 because they are not guaranteed to be exactly
32 bits, they are at least 32 bits, nor are they guaranteed to be
int or long. If you explicitly need 64-bit variables, use I64 and
U64.
o Assuming one can dereference any type of pointer for any type of
data
char *p = ...;
long pony = *(long *)p; /* BAD */
Many platforms, quite rightly so, will give you a core dump instead
of a pony if the p happens not to be correctly aligned.
o Lvalue casts
(int)*p = ...; /* BAD */
Simply not portable. Get your lvalue to be of the right type, or
maybe use temporary variables, or dirty tricks with unions.
o Assume anything about structs (especially the ones you don't
control, like the ones coming from the system headers)
o While C guarantees the ordering specified in the
struct definition, between different platforms the
definitions might differ
o That the sizeof(struct) or the alignments are the same
everywhere
o There might be padding bytes between the fields to
align the fields - the bytes can be anything
o Structs are required to be aligned to the maximum
alignment required by the fields - which for native
types is for usually equivalent to sizeof() of the
field
o Assuming the character set is ASCIIish
Perl can compile and run under EBCDIC platforms. See perlebcdic.
This is transparent for the most part, but because the character
sets differ, you shouldn't use numeric (decimal, octal, nor hex)
constants to refer to characters. You can safely say 'A', but not
0x41. You can safely say '\n', but not "\012". However, you can
use macros defined in utf8.h to specify any code point portably.
"LATIN1_TO_NATIVE(0xDF)" is going to be the code point that means
LATIN SMALL LETTER SHARP S on whatever platform you are running on
(on ASCII platforms it compiles without adding any extra code, so
there is zero performance hit on those). The acceptable inputs to
"LATIN1_TO_NATIVE" are from 0x00 through 0xFF. If your input isn't
guaranteed to be in that range, use "UNICODE_TO_NATIVE" instead.
"NATIVE_TO_LATIN1" and "NATIVE_TO_UNICODE" translate the opposite
direction.
If you need the string representation of a character that doesn't
have a mnemonic name in C, you should add it to the list in
regen/unicode_constants.pl, and have Perl create "#define"'s for
you, based on the current platform.
Note that the "isFOO" and "toFOO" macros in handy.h work properly
on native code points and strings.
Also, the range 'A' - 'Z' in ASCII is an unbroken sequence of 26
upper case alphabetic characters. That is not true in EBCDIC. Nor
for 'a' to 'z'. But '0' - '9' is an unbroken range in both
systems. Don't assume anything about other ranges. (Note that
special handling of ranges in regular expression patterns and
transliterations makes it appear to Perl code that the
aforementioned ranges are all unbroken.)
Many of the comments in the existing code ignore the possibility of
EBCDIC, and may be wrong therefore, even if the code works. This
is actually a tribute to the successful transparent insertion of
being able to handle EBCDIC without having to change pre-existing
code.
UTF-8 and UTF-EBCDIC are two different encodings used to represent
Unicode code points as sequences of bytes. Macros with the same
names (but different definitions) in utf8.h and utfebcdic.h are
used to allow the calling code to think that there is only one such
assume that, often referring to something like, say, "hibit". The
situation differs and is not so simple on EBCDIC machines, but as
long as the code itself uses the "NATIVE_IS_INVARIANT()" macro
appropriately, it works, even if the comments are wrong.
As noted in "TESTING" in perlhack, when writing test scripts, the
file t/charset_tools.pl contains some helpful functions for writing
tests valid on both ASCII and EBCDIC platforms. Sometimes, though,
a test can't use a function and it's inconvenient to have different
test versions depending on the platform. There are 20 code points
that are the same in all 4 character sets currently recognized by
Perl (the 3 EBCDIC code pages plus ISO 8859-1 (ASCII/Latin1)).
These can be used in such tests, though there is a small
possibility that Perl will become available in yet another
character set, breaking your test. All but one of these code
points are C0 control characters. The most significant controls
that are the same are "\0", "\r", and "\N{VT}" (also specifiable as
"\cK", "\x0B", "\N{U+0B}", or "\013"). The single non-control is
U+00B6 PILCROW SIGN. The controls that are the same have the same
bit pattern in all 4 character sets, regardless of the UTF8ness of
the string containing them. The bit pattern for U+B6 is the same
in all 4 for non-UTF8 strings, but differs in each when its
containing string is UTF-8 encoded. The only other code points
that have some sort of sameness across all 4 character sets are the
pair 0xDC and 0xFC. Together these represent upper- and lowercase
LATIN LETTER U WITH DIAERESIS, but which is upper and which is
lower may be reversed: 0xDC is the capital in Latin1 and 0xFC is
the small letter, while 0xFC is the capital in EBCDIC and 0xDC is
the small one. This factoid may be exploited in writing case
insensitive tests that are the same across all 4 character sets.
o Assuming the character set is just ASCII
ASCII is a 7 bit encoding, but bytes have 8 bits in them. The 128
extra characters have different meanings depending on the locale.
Absent a locale, currently these extra characters are generally
considered to be unassigned, and this has presented some problems.
This has being changed starting in 5.12 so that these characters
can be considered to be Latin-1 (ISO-8859-1).
o Mixing #define and #ifdef
#define BURGLE(x) ... \
#ifdef BURGLE_OLD_STYLE /* BAD */
... do it the old way ... \
#else
... do it the new way ... \
#endif
You cannot portably "stack" cpp directives. For example in the
above you need two separate BURGLE() #defines, one for each #ifdef
branch.
o Adding non-comment stuff after #endif or #else
#ifdef SNOSH
...
#else !SNOSH /* BAD */
...
...
#else /* !SNOSH */
...
#endif /* SNOSH */
The gcc option "-Wendif-labels" warns about the bad variant (by
default on starting from Perl 5.9.4).
o Having a comma after the last element of an enum list
enum color {
CERULEAN,
CHARTREUSE,
CINNABAR, /* BAD */
};
is not portable. Leave out the last comma.
Also note that whether enums are implicitly morphable to ints
varies between compilers, you might need to (int).
o Mixing signed char pointers with unsigned char pointers
int foo(char *s) { ... }
...
unsigned char *t = ...; /* Or U8* t = ... */
foo(t); /* BAD */
While this is legal practice, it is certainly dubious, and
downright fatal in at least one platform: for example VMS cc
considers this a fatal error. One cause for people often making
this mistake is that a "naked char" and therefore dereferencing a
"naked char pointer" have an undefined signedness: it depends on
the compiler and the flags of the compiler and the underlying
platform whether the result is signed or unsigned. For this very
same reason using a 'char' as an array index is bad.
o Macros that have string constants and their arguments as substrings
of the string constants
#define FOO(n) printf("number = %d\n", n) /* BAD */
FOO(10);
Pre-ANSI semantics for that was equivalent to
printf("10umber = %d\10");
which is probably not what you were expecting. Unfortunately at
least one reasonably common and modern C compiler does "real
backward compatibility" here, in AIX that is what still happens
even though the rest of the AIX compiler is very happily C89.
o Using printf formats for non-basic C types
IV i = ...;
printf("i = %d\n", i); /* BAD */
While this might by accident work in some platform (where IV
happens to be an "int"), in general it cannot. IV might be
it might also be unsigned, in which case large uids would be
printed as negative values.
There is no simple solution to this because of printf()'s limited
intelligence, but for many types the right format is available as
with either 'f' or '_f' suffix, for example:
IVdf /* IV in decimal */
UVxf /* UV is hexadecimal */
printf("i = %"IVdf"\n", i); /* The IVdf is a string constant. */
Uid_t_f /* Uid_t in decimal */
printf("who = %"Uid_t_f"\n", who);
Or you can try casting to a "wide enough" type:
printf("i = %"IVdf"\n", (IV)something_very_small_and_signed);
See "Formatted Printing of Size_t and SSize_t" in perlguts for how
to print those.
Also remember that the %p format really does require a void
pointer:
U8* p = ...;
printf("p = %p\n", (void*)p);
The gcc option "-Wformat" scans for such problems.
o Blindly passing va_list
Not all platforms support passing va_list to further varargs
(stdarg) functions. The right thing to do is to copy the va_list
using the Perl_va_copy() if the NEED_VA_COPY is defined.
o Using gcc statement expressions
val = ({...;...;...}); /* BAD */
While a nice extension, it's not portable. Historically, Perl used
them in macros if available to gain some extra speed (essentially
as a funky form of inlining), but we now support (or emulate) C99
"static inline" functions, so use them instead. Declare functions
as "PERL_STATIC_INLINE" to transparently fall back to emulation
where needed.
o Binding together several statements in a macro
Use the macros STMT_START and STMT_END.
STMT_START {
...
} STMT_END
o Testing for operating systems or versions when should be testing
for features
"Foonix", the above is very wrong. This is more correct (though
still not perfect, because the below is a compile-time check):
#ifdef HAS_QUUX
foo = quux();
#endif
How does the HAS_QUUX become defined where it needs to be? Well,
if Foonix happens to be Unixy enough to be able to run the
Configure script, and Configure has been taught about detecting and
testing quux(), the HAS_QUUX will be correctly defined. In other
platforms, the corresponding configuration step will hopefully do
the same.
In a pinch, if you cannot wait for Configure to be educated, or if
you have a good hunch of where quux() might be available, you can
temporarily try the following:
#if (defined(__FOONIX__) || defined(__BARNIX__))
# define HAS_QUUX
#endif
...
#ifdef HAS_QUUX
foo = quux();
#endif
But in any case, try to keep the features and operating systems
separate.
A good resource on the predefined macros for various operating
systems, compilers, and so forth is
<http://sourceforge.net/p/predef/wiki/Home/>
o Assuming the contents of static memory pointed to by the return
values of Perl wrappers for C library functions doesn't change.
Many C library functions return pointers to static storage that can
be overwritten by subsequent calls to the same or related
functions. Perl has wrappers for some of these functions.
Originally many of those wrappers returned those volatile pointers.
But over time almost all of them have evolved to return stable
copies. To cope with the remaining ones, do a "savepv" in perlapi
to make a copy, thus avoiding these problems. You will have to
free the copy when you're done to avoid memory leaks. If you don't
have control over when it gets freed, you'll need to make the copy
in a mortal scalar, like so
SvPVX(sv_2mortal(newSVpv(volatile_string, 0)))
Problematic System Interfaces
o Perl strings are NOT the same as C strings: They may contain "NUL"
characters, whereas a C string is terminated by the first "NUL".
That is why Perl API functions that deal with strings generally
take a pointer to the first byte and either a length or a pointer
to the byte just beyond the final one.
And this is the reason that many of the C library string handling
functions should not be used. They don't cope with the full
Here's an example. It used to be a common paradigm, for decades,
in the perl core to use "strchr("list", c)" to see if the character
"c" is any of the ones given in "list", a double-quote-enclosed
string of the set of characters that we are seeing if "c" is one
of. As long as "c" isn't a "NUL", it works. But when "c" is a
"NUL", "strchr" returns a pointer to the terminating "NUL" in
"list". This likely will result in a segfault or a security issue
when the caller uses that end pointer as the starting point to read
from.
A solution to this and many similar issues is to use the "mem"-foo
C library functions instead. In this case "memchr" can be used to
see if "c" is in "list" and works even if "c" is "NUL". These
functions need an additional parameter to give the string length.
In the case of literal string parameters, perl has defined macros
that calculate the length for you. See "String Handling" in
perlapi.
o malloc(0), realloc(0), calloc(0, 0) are non-portable. To be
portable allocate at least one byte. (In general you should rarely
need to work at this low level, but instead use the various malloc
wrappers.)
o snprintf() - the return type is unportable. Use my_snprintf()
instead.
Security problems
Last but not least, here are various tips for safer coding. See also
perlclib for libc/stdio replacements one should use.
o Do not use gets()
Or we will publicly ridicule you. Seriously.
o Do not use tmpfile()
Use mkstemp() instead.
o Do not use strcpy() or strcat() or strncpy() or strncat()
Use my_strlcpy() and my_strlcat() instead: they either use the
native implementation, or Perl's own implementation (borrowed from
the public domain implementation of INN).
o Do not use sprintf() or vsprintf()
If you really want just plain byte strings, use my_snprintf() and
my_vsnprintf() instead, which will try to use snprintf() and
vsnprintf() if those safer APIs are available. If you want
something fancier than a plain byte string, use "Perl_form"() or
SVs and "Perl_sv_catpvf()".
Note that glibc "printf()", "sprintf()", etc. are buggy before
glibc version 2.17. They won't allow a "%.s" format with a
precision to create a string that isn't valid UTF-8 if the current
underlying locale of the program is UTF-8. What happens is that
the %s and its operand are simply skipped without any notice.
<https://sourceware.org/bugzilla/show_bug.cgi?id=6530>.
Use grok_atoUV() instead. strtol() or strtoul() (or their
IV/UV-friendly macro disguises, Strtol() and Strtoul(), or Atol()
and Atoul() are affected by locale, which is bad.
DEBUGGING
You can compile a special debugging version of Perl, which allows you
to use the "-D" option of Perl to tell more about what Perl is doing.
But sometimes there is no alternative than to dive in with a debugger,
either to see the stack trace of a core dump (very useful in a bug
report), or trying to figure out what went wrong before the core dump
happened, or how did we end up having wrong or unexpected results.
Poking at Perl
To really poke around with Perl, you'll probably want to build Perl for
debugging, like this:
./Configure -d -DDEBUGGING
make
"-DDEBUGGING" turns on the C compiler's "-g" flag to have it produce
debugging information which will allow us to step through a running
program, and to see in which C function we are at (without the
debugging information we might see only the numerical addresses of the
functions, which is not very helpful). It will also turn on the
"DEBUGGING" compilation symbol which enables all the internal debugging
code in Perl. There are a whole bunch of things you can debug with
this: perlrun lists them all, and the best way to find out about them
is to play about with them. The most useful options are probably
l Context (loop) stack processing
s Stack snapshots (with v, displays all stacks)
t Trace execution
o Method and overloading resolution
c String/numeric conversions
For example
$ perl -Dst -e '$a + 1'
....
(-e:1) gvsv(main::a)
=> UNDEF
(-e:1) const(IV(1))
=> UNDEF IV(1)
(-e:1) add
=> NV(1)
Some of the functionality of the debugging code can be achieved with a
non-debugging perl by using XS modules:
-Dr => use re 'debug'
-Dx => use O 'Debug'
Using a source-level debugger
If the debugging output of "-D" doesn't help you, it's time to step
through perl's execution with a source-level debugger.
o We'll use "gdb" for our examples here; the principles will apply to
any debugger (many vendors call their debugger "dbx"), but check the
gdb ./perl core
You'll want to do that in your Perl source tree so the debugger can
read the source code. You should see the copyright message, followed
by the prompt.
(gdb)
"help" will get you into the documentation, but here are the most
useful commands:
o run [args]
Run the program with the given arguments.
o break function_name
o break source.c:xxx
Tells the debugger that we'll want to pause execution when we reach
either the named function (but see "Internal Functions" in
perlguts!) or the given line in the named source file.
o step
Steps through the program a line at a time.
o next
Steps through the program a line at a time, without descending into
functions.
o continue
Run until the next breakpoint.
o finish
Run until the end of the current function, then stop again.
o 'enter'
Just pressing Enter will do the most recent operation again - it's a
blessing when stepping through miles of source code.
o ptype
Prints the C definition of the argument given.
(gdb) ptype PL_op
type = struct op {
OP *op_next;
OP *op_sibparent;
OP *(*op_ppaddr)(void);
PADOFFSET op_targ;
unsigned int op_type : 9;
unsigned int op_opt : 1;
unsigned int op_slabbed : 1;
o print
Execute the given C code and print its results. WARNING: Perl makes
heavy use of macros, and gdb does not necessarily support macros
(see later "gdb macro support"). You'll have to substitute them
yourself, or to invoke cpp on the source code files (see "The .i
Targets") So, for instance, you can't say
print SvPV_nolen(sv)
but you have to say
print Perl_sv_2pv_nolen(sv)
You may find it helpful to have a "macro dictionary", which you can
produce by saying "cpp -dM perl.c | sort". Even then, cpp won't
recursively apply those macros for you.
gdb macro support
Recent versions of gdb have fairly good macro support, but in order to
use it you'll need to compile perl with macro definitions included in
the debugging information. Using gcc version 3.1, this means
configuring with "-Doptimize=-g3". Other compilers might use a
different switch (if they support debugging macros at all).
Dumping Perl Data Structures
One way to get around this macro hell is to use the dumping functions
in dump.c; these work a little like an internal Devel::Peek, but they
also cover OPs and other structures that you can't get at from Perl.
Let's take an example. We'll use the "$a = $b + $c" we used before,
but give it a bit of context: "$b = "6XXXX"; $c = 2.3;". Where's a
good place to stop and poke around?
What about "pp_add", the function we examined earlier to implement the
"+" operator:
(gdb) break Perl_pp_add
Breakpoint 1 at 0x46249f: file pp_hot.c, line 309.
Notice we use "Perl_pp_add" and not "pp_add" - see "Internal Functions"
in perlguts. With the breakpoint in place, we can run our program:
(gdb) run -e '$b = "6XXXX"; $c = 2.3; $a = $b + $c'
Lots of junk will go past as gdb reads in the relevant source files and
libraries, and then:
Breakpoint 1, Perl_pp_add () at pp_hot.c:309
1396 dSP; dATARGET; bool useleft; SV *svl, *svr;
(gdb) step
311 dPOPTOPnnrl_ul;
(gdb)
We looked at this bit of code before, and we said that "dPOPTOPnnrl_ul"
arranges for two "NV"s to be placed into "left" and "right" - let's
slightly expand it:
#define dPOPTOPnnrl_ul NV right = POPn; \
"leftsv" in the same way as before - yes, "POPn" uses "SvNV".
Since we don't have an NV for $b, we'll have to use "sv_2nv" to convert
it. If we step again, we'll find ourselves there:
(gdb) step
Perl_sv_2nv (sv=0xa0675d0) at sv.c:1669
1669 if (!sv)
(gdb)
We can now use "Perl_sv_dump" to investigate the SV:
(gdb) print Perl_sv_dump(sv)
SV = PV(0xa057cc0) at 0xa0675d0
REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0xa06a510 "6XXXX"\0
CUR = 5
LEN = 6
$1 = void
We know we're going to get 6 from this, so let's finish the subroutine:
(gdb) finish
Run till exit from #0 Perl_sv_2nv (sv=0xa0675d0) at sv.c:1671
0x462669 in Perl_pp_add () at pp_hot.c:311
311 dPOPTOPnnrl_ul;
We can also dump out this op: the current op is always stored in
"PL_op", and we can dump it with "Perl_op_dump". This'll give us
similar output to CPAN module B::Debug.
(gdb) print Perl_op_dump(PL_op)
{
13 TYPE = add ===> 14
TARG = 1
FLAGS = (SCALAR,KIDS)
{
TYPE = null ===> (12)
(was rv2sv)
FLAGS = (SCALAR,KIDS)
{
11 TYPE = gvsv ===> 12
FLAGS = (SCALAR)
GV = main::b
}
}
# finish this later #
Using gdb to look at specific parts of a program
With the example above, you knew to look for "Perl_pp_add", but what if
there were multiple calls to it all over the place, or you didn't know
what the op was you were looking for?
One way to do this is to inject a rare call somewhere near what you're
looking for. For example, you could add "study" before your method:
study;
for my $c (1..100) {
study if $c == 50;
}
Using gdb to look at what the parser/lexer are doing
If you want to see what perl is doing when parsing/lexing your code,
you can use "BEGIN {}":
print "Before\n";
BEGIN { study; }
print "After\n";
And in gdb:
(gdb) break Perl_pp_study
If you want to see what the parser/lexer is doing inside of "if" blocks
and the like you need to be a little trickier:
if ($a && $b && do { BEGIN { study } 1 } && $c) { ... }
SOURCE CODE STATIC ANALYSIS
Various tools exist for analysing C source code statically, as opposed
to dynamically, that is, without executing the code. It is possible to
detect resource leaks, undefined behaviour, type mismatches,
portability problems, code paths that would cause illegal memory
accesses, and other similar problems by just parsing the C code and
looking at the resulting graph, what does it tell about the execution
and data flows. As a matter of fact, this is exactly how C compilers
know to give warnings about dubious code.
lint
The good old C code quality inspector, "lint", is available in several
platforms, but please be aware that there are several different
implementations of it by different vendors, which means that the flags
are not identical across different platforms.
There is a "lint" target in Makefile, but you may have to diddle with
the flags (see above).
Coverity
Coverity (<http://www.coverity.com/>) is a product similar to lint and
as a testbed for their product they periodically check several open
source projects, and they give out accounts to open source developers
to the defect databases.
There is Coverity setup for the perl5 project:
<https://scan.coverity.com/projects/perl5>
HP-UX cadvise (Code Advisor)
HP has a C/C++ static analyzer product for HP-UX caller Code Advisor.
(Link not given here because the URL is horribly long and seems
horribly unstable; use the search engine of your choice to find it.)
The use of the "cadvise_cc" recipe with "Configure ...
-Dcc=./cadvise_cc" (see cadvise "User Guide") is recommended; as is the
use of "+wall".
cpd (cut-and-paste detector)
for static analysis of Java code, but later the cpd part of it was
extended to parse also C and C++.
Download the pmd-bin-X.Y.zip () from the SourceForge site, extract the
pmd-X.Y.jar from it, and then run that on source code thusly:
java -cp pmd-X.Y.jar net.sourceforge.pmd.cpd.CPD \
--minimum-tokens 100 --files /some/where/src --language c > cpd.txt
You may run into memory limits, in which case you should use the -Xmx
option:
java -Xmx512M ...
gcc warnings
Though much can be written about the inconsistency and coverage
problems of gcc warnings (like "-Wall" not meaning "all the warnings",
or some common portability problems not being covered by "-Wall", or
"-ansi" and "-pedantic" both being a poorly defined collection of
warnings, and so forth), gcc is still a useful tool in keeping our
coding nose clean.
The "-Wall" is by default on.
It would be nice for "-pedantic") to be on always, but unfortunately it
is not safe on all platforms - for example fatal conflicts with the
system headers (Solaris being a prime example). If Configure
"-Dgccansipedantic" is used, the "cflags" frontend selects "-pedantic"
for the platforms where it is known to be safe.
The following extra flags are added:
o "-Wendif-labels"
o "-Wextra"
o "-Wc++-compat"
o "-Wwrite-strings"
o "-Werror=pointer-arith"
o "-Werror=vla"
The following flags would be nice to have but they would first need
their own Augean stablemaster:
o "-Wshadow"
o "-Wstrict-prototypes"
The "-Wtraditional" is another example of the annoying tendency of gcc
to bundle a lot of warnings under one switch (it would be impossible to
deploy in practice because it would complain a lot) but it does contain
some warnings that would be beneficial to have available on their own,
such as the warning about string constants inside macros containing the
macro arguments: this behaved differently pre-ANSI than it does in
ANSI, and some C compilers are still in transition, AIX being an
example.
MEMORY DEBUGGERS
NOTE 1: Running under older memory debuggers such as Purify, valgrind
or Third Degree greatly slows down the execution: seconds become
minutes, minutes become hours. For example as of Perl 5.8.1, the
ext/Encode/t/Unicode.t takes extraordinarily long to complete under
e.g. Purify, Third Degree, and valgrind. Under valgrind it takes more
than six hours, even on a snappy computer. The said test must be doing
something that is quite unfriendly for memory debuggers. If you don't
feel like waiting, that you can simply kill away the perl process.
Roughly valgrind slows down execution by factor 10, AddressSanitizer by
factor 2.
NOTE 2: To minimize the number of memory leak false alarms (see
"PERL_DESTRUCT_LEVEL" for more information), you have to set the
environment variable PERL_DESTRUCT_LEVEL to 2. For example, like this:
env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib ...
NOTE 3: There are known memory leaks when there are compile-time errors
within eval or require, seeing "S_doeval" in the call stack is a good
sign of these. Fixing these leaks is non-trivial, unfortunately, but
they must be fixed eventually.
NOTE 4: DynaLoader will not clean up after itself completely unless
Perl is built with the Configure option
"-Accflags=-DDL_UNLOAD_ALL_AT_EXIT".
valgrind
The valgrind tool can be used to find out both memory leaks and illegal
heap memory accesses. As of version 3.3.0, Valgrind only supports
Linux on x86, x86-64 and PowerPC and Darwin (OS X) on x86 and x86-64.
The special "test.valgrind" target can be used to run the tests under
valgrind. Found errors and memory leaks are logged in files named
testfile.valgrind and by default output is displayed inline.
Example usage:
make test.valgrind
Since valgrind adds significant overhead, tests will take much longer
to run. The valgrind tests support being run in parallel to help with
this:
TEST_JOBS=9 make test.valgrind
Note that the above two invocations will be very verbose as reachable
memory and leak-checking is enabled by default. If you want to just
see pure errors, try:
VG_OPTS='-q --leak-check=no --show-reachable=no' TEST_JOBS=9 \
make test.valgrind
Valgrind also provides a cachegrind tool, invoked on perl as:
VG_OPTS=--tool=cachegrind make test.valgrind
As system libraries (most notably glibc) are also triggering errors,
valgrind allows to suppress such errors using suppression files. The
AddressSanitizer
AddressSanitizer ("ASan") consists of a compiler instrumentation module
and a run-time "malloc" library. ASan is available for a variety of
architectures, operating systems, and compilers (see project link
below). It checks for unsafe memory usage, such as use after free and
buffer overflow conditions, and is fast enough that you can easily
compile your debugging or optimized perl with it. Modern versions of
ASan check for memory leaks by default on most platforms, otherwise
(e.g. x86_64 OS X) this feature can be enabled via
"ASAN_OPTIONS=detect_leaks=1".
To build perl with AddressSanitizer, your Configure invocation should
look like:
sh Configure -des -Dcc=clang \
-Accflags=-fsanitize=address -Aldflags=-fsanitize=address \
-Alddlflags=-shared\ -fsanitize=address \
-fsanitize-blacklist=`pwd`/asan_ignore
where these arguments mean:
o -Dcc=clang
This should be replaced by the full path to your clang executable
if it is not in your path.
o -Accflags=-fsanitize=address
Compile perl and extensions sources with AddressSanitizer.
o -Aldflags=-fsanitize=address
Link the perl executable with AddressSanitizer.
o -Alddlflags=-shared\ -fsanitize=address
Link dynamic extensions with AddressSanitizer. You must manually
specify "-shared" because using "-Alddlflags=-shared" will prevent
Configure from setting a default value for "lddlflags", which
usually contains "-shared" (at least on Linux).
o -fsanitize-blacklist=`pwd`/asan_ignore
AddressSanitizer will ignore functions listed in the "asan_ignore"
file. (This file should contain a short explanation of why each of
the functions is listed.)
See also <https://github.com/google/sanitizers/wiki/AddressSanitizer>.
PROFILING
Depending on your platform there are various ways of profiling Perl.
There are two commonly used techniques of profiling executables:
statistical time-sampling and basic-block counting.
The first method takes periodically samples of the CPU program counter,
and since the program counter can be correlated with the code generated
for functions, we get a statistical view of in which functions the
program is spending its time. The caveats are that very small/fast
The second method divides up the generated code into basic blocks.
Basic blocks are sections of code that are entered only in the
beginning and exited only at the end. For example, a conditional jump
starts a basic block. Basic block profiling usually works by
instrumenting the code by adding enter basic block #nnnn book-keeping
code to the generated code. During the execution of the code the basic
block counters are then updated appropriately. The caveat is that the
added extra code can skew the results: again, the profiling tools
usually try to factor their own effects out of the results.
Gprof Profiling
gprof is a profiling tool available in many Unix platforms which uses
statistical time-sampling. You can build a profiled version of perl by
compiling using gcc with the flag "-pg". Either edit config.sh or re-
run Configure. Running the profiled version of Perl will create an
output file called gmon.out which contains the profiling data collected
during the execution.
quick hint:
$ sh Configure -des -Dusedevel -Accflags='-pg' \
-Aldflags='-pg' -Alddlflags='-pg -shared' \
&& make perl
$ ./perl ... # creates gmon.out in current directory
$ gprof ./perl > out
$ less out
(you probably need to add "-shared" to the <-Alddlflags> line until RT
#118199 is resolved)
The gprof tool can then display the collected data in various ways.
Usually gprof understands the following options:
o -a
Suppress statically defined functions from the profile.
o -b
Suppress the verbose descriptions in the profile.
o -e routine
Exclude the given routine and its descendants from the profile.
o -f routine
Display only the given routine and its descendants in the profile.
o -s
Generate a summary file called gmon.sum which then may be given to
subsequent gprof runs to accumulate data over several runs.
o -z
Display routines that have zero usage.
re-run Configure.
quick hint:
$ sh Configure -des -Dusedevel -Doptimize='-g' \
-Accflags='-fprofile-arcs -ftest-coverage' \
-Aldflags='-fprofile-arcs -ftest-coverage' \
-Alddlflags='-fprofile-arcs -ftest-coverage -shared' \
&& make perl
$ rm -f regexec.c.gcov regexec.gcda
$ ./perl ...
$ gcov regexec.c
$ less regexec.c.gcov
(you probably need to add "-shared" to the <-Alddlflags> line until RT
#118199 is resolved)
Running the profiled version of Perl will cause profile output to be
generated. For each source file an accompanying .gcda file will be
created.
To display the results you use the gcov utility (which should be
installed if you have gcc 3.0 or newer installed). gcov is run on
source code files, like this
gcov sv.c
which will cause sv.c.gcov to be created. The .gcov files contain the
source code annotated with relative frequencies of execution indicated
by "#" markers. If you want to generate .gcov files for all profiled
object files, you can run something like this:
for file in `find . -name \*.gcno`
do sh -c "cd `dirname $file` && gcov `basename $file .gcno`"
done
Useful options of gcov include "-b" which will summarise the basic
block, branch, and function call coverage, and "-c" which instead of
relative frequencies will use the actual counts. For more information
on the use of gcov and basic block profiling with gcc, see the latest
GNU CC manual. As of gcc 4.8, this is at
<http://gcc.gnu.org/onlinedocs/gcc/Gcov-Intro.html#Gcov-Intro>
callgrind profiling
callgrind is a valgrind tool for profiling source code. Paired with
kcachegrind (a Qt based UI), it gives you an overview of where code is
taking up time, as well as the ability to examine callers, call trees,
and more. One of its benefits is you can use it on perl and XS modules
that have not been compiled with debugging symbols.
If perl is compiled with debugging symbols ("-g"), you can view the
annotated source and click around, much like Devel::NYTProf's HTML
output.
For basic usage:
valgrind --tool=callgrind ./perl ...
By default it will write output to callgrind.out.PID, but you can
callgrind_annotate. In it's basic form:
callgrind_annotate callgrind.out.PID | less
Some useful options are:
o --threshold
Percentage of counts (of primary sort event) we are interested in.
The default is 99%, 100% might show things that seem to be missing.
o --auto
Annotate all source files containing functions that helped reach
the event count threshold.
MISCELLANEOUS TRICKS
PERL_DESTRUCT_LEVEL
If you want to run any of the tests yourself manually using e.g.
valgrind, please note that by default perl does not explicitly cleanup
all the memory it has allocated (such as global memory arenas) but
instead lets the exit() of the whole program "take care" of such
allocations, also known as "global destruction of objects".
There is a way to tell perl to do complete cleanup: set the environment
variable PERL_DESTRUCT_LEVEL to a non-zero value. The t/TEST wrapper
does set this to 2, and this is what you need to do too, if you don't
want to see the "global leaks": For example, for running under valgrind
env PERL_DESTRUCT_LEVEL=2 valgrind ./perl -Ilib t/foo/bar.t
(Note: the mod_perl apache module uses also this environment variable
for its own purposes and extended its semantics. Refer to the mod_perl
documentation for more information. Also, spawned threads do the
equivalent of setting this variable to the value 1.)
If, at the end of a run you get the message N scalars leaked, you can
recompile with "-DDEBUG_LEAKING_SCALARS", ("Configure
-Accflags=-DDEBUG_LEAKING_SCALARS"), which will cause the addresses of
all those leaked SVs to be dumped along with details as to where each
SV was originally allocated. This information is also displayed by
Devel::Peek. Note that the extra details recorded with each SV
increases memory usage, so it shouldn't be used in production
environments. It also converts "new_SV()" from a macro into a real
function, so you can use your favourite debugger to discover where
those pesky SVs were allocated.
If you see that you're leaking memory at runtime, but neither valgrind
nor "-DDEBUG_LEAKING_SCALARS" will find anything, you're probably
leaking SVs that are still reachable and will be properly cleaned up
during destruction of the interpreter. In such cases, using the "-Dm"
switch can point you to the source of the leak. If the executable was
built with "-DDEBUG_LEAKING_SCALARS", "-Dm" will output SV allocations
in addition to memory allocations. Each SV allocation has a distinct
serial number that will be written on creation and destruction of the
SV. So if you're executing the leaking code in a loop, you need to
look for SVs that are created, but never destroyed between each cycle.
If such an SV is found, set a conditional breakpoint within "new_SV()"
and make it break only when "PL_sv_serial" is equal to the serial
"-DPERL_MEM_LOG" instead.
PERL_MEM_LOG
If compiled with "-DPERL_MEM_LOG" ("-Accflags=-DPERL_MEM_LOG"), both
memory and SV allocations go through logging functions, which is handy
for breakpoint setting.
Unless "-DPERL_MEM_LOG_NOIMPL" ("-Accflags=-DPERL_MEM_LOG_NOIMPL") is
also compiled, the logging functions read $ENV{PERL_MEM_LOG} to
determine whether to log the event, and if so how:
$ENV{PERL_MEM_LOG} =~ /m/ Log all memory ops
$ENV{PERL_MEM_LOG} =~ /s/ Log all SV ops
$ENV{PERL_MEM_LOG} =~ /t/ include timestamp in Log
$ENV{PERL_MEM_LOG} =~ /^(\d+)/ write to FD given (default is 2)
Memory logging is somewhat similar to "-Dm" but is independent of
"-DDEBUGGING", and at a higher level; all uses of Newx(), Renew(), and
Safefree() are logged with the caller's source code file and line
number (and C function name, if supported by the C compiler). In
contrast, "-Dm" is directly at the point of "malloc()". SV logging is
similar.
Since the logging doesn't use PerlIO, all SV allocations are logged and
no extra SV allocations are introduced by enabling the logging. If
compiled with "-DDEBUG_LEAKING_SCALARS", the serial number for each SV
allocation is also logged.
DDD over gdb
Those debugging perl with the DDD frontend over gdb may find the
following useful:
You can extend the data conversion shortcuts menu, so for example you
can display an SV's IV value with one click, without doing any typing.
To do that simply edit ~/.ddd/init file and add after:
! Display shortcuts.
Ddd*gdbDisplayShortcuts: \
/t () // Convert to Bin\n\
/d () // Convert to Dec\n\
/x () // Convert to Hex\n\
/o () // Convert to Oct(\n\
the following two lines:
((XPV*) (())->sv_any )->xpv_pv // 2pvx\n\
((XPVIV*) (())->sv_any )->xiv_iv // 2ivx
so now you can do ivx and pvx lookups or you can plug there the sv_peek
"conversion":
Perl_sv_peek(my_perl, (SV*)()) // sv_peek
(The my_perl is for threaded builds.) Just remember that every line,
but the last one, should end with \n\
Alternatively edit the init file interactively via: 3rd mouse button ->
New Display -> Edit Menu
symbol names (function names), the object names (like "perl"), and if
it can, also the source code locations (file:line).
The supported platforms are Linux, and OS X (some *BSD might work at
least partly, but they have not yet been tested).
This feature hasn't been tested with multiple threads, but it will only
show the backtrace of the thread doing the backtracing.
The feature needs to be enabled with "Configure -Dusecbacktrace".
The "-Dusecbacktrace" also enables keeping the debug information when
compiling/linking (often: "-g"). Many compilers/linkers do support
having both optimization and keeping the debug information. The debug
information is needed for the symbol names and the source locations.
Static functions might not be visible for the backtrace.
Source code locations, even if available, can often be missing or
misleading if the compiler has e.g. inlined code. Optimizer can make
matching the source code and the object code quite challenging.
Linux
You must have the BFD (-lbfd) library installed, otherwise "perl"
will fail to link. The BFD is usually distributed as part of the
GNU binutils.
Summary: "Configure ... -Dusecbacktrace" and you need "-lbfd".
OS X
The source code locations are supported only if you have the
Developer Tools installed. (BFD is not needed.)
Summary: "Configure ... -Dusecbacktrace" and installing the
Developer Tools would be good.
Optionally, for trying out the feature, you may want to enable
automatic dumping of the backtrace just before a warning or croak (die)
message is emitted, by adding "-Accflags=-DUSE_C_BACKTRACE_ON_ERROR"
for Configure.
Unless the above additional feature is enabled, nothing about the
backtrace functionality is visible, except for the Perl/XS level.
Furthermore, even if you have enabled this feature to be compiled, you
need to enable it in runtime with an environment variable:
"PERL_C_BACKTRACE_ON_ERROR=10". It must be an integer higher than
zero, telling the desired frame count.
Retrieving the backtrace from Perl level (using for example an XS
extension) would be much less exciting than one would hope: normally
you would see "runops", "entersub", and not much else. This API is
intended to be called from within the Perl implementation, not from
Perl level execution.
The C API for the backtrace is as follows:
get_c_backtrace
free_c_backtrace
Read-only optrees
Under ithreads the optree is read only. If you want to enforce this,
to check for write accesses from buggy code, compile with
"-Accflags=-DPERL_DEBUG_READONLY_OPS" to enable code that allocates op
memory via "mmap", and sets it read-only when it is attached to a
subroutine. Any write access to an op results in a "SIGBUS" and abort.
This code is intended for development only, and may not be portable
even to all Unix variants. Also, it is an 80% solution, in that it
isn't able to make all ops read only. Specifically it does not apply
to op slabs belonging to "BEGIN" blocks.
However, as an 80% solution it is still effective, as it has caught
bugs in the past.
When is a bool not a bool?
There wasn't necessarily a standard "bool" type on compilers prior to
C99, and so some workarounds were created. The "TRUE" and "FALSE"
macros are still available as alternatives for "true" and "false". And
the "cBOOL" macro was created to correctly cast to a true/false value
in all circumstances, but should no longer be necessary. Using
"(bool)" expr> should now always work.
There are no plans to remove any of "TRUE", "FALSE", nor "cBOOL".
Finding unsafe truncations
You may wish to run "Configure" with something like
-Accflags='-Wconversion -Wno-sign-conversion -Wno-shorten-64-to-32'
or your compiler's equivalent to make it easier to spot any unsafe
truncations that show up.
The .i Targets
You can expand the macros in a foo.c file by saying
make foo.i
which will expand the macros using cpp. Don't be scared by the
results.
AUTHOR
This document was originally written by Nathan Torkington, and is
maintained by the perl5-porters mailing list.
perl v5.36.3 2023-11-28 PERLHACKTIPS(1)