FreeBSD manual
download PDF document: ssh-keygen.1.pdf
SSH-KEYGEN(1) FreeBSD General Commands Manual SSH-KEYGEN(1)
NAME
ssh-keygen - OpenSSH authentication key utility
SYNOPSIS
ssh-keygen [-q] [-a rounds] [-b bits] [-C comment] [-f output_keyfile]
[-m format] [-N new_passphrase] [-O option]
[-t dsa | ecdsa | ecdsa-sk | ed25519 | ed25519-sk | rsa]
[-w provider] [-Z cipher]
ssh-keygen -p [-a rounds] [-f keyfile] [-m format] [-N new_passphrase]
[-P old_passphrase] [-Z cipher]
ssh-keygen -i [-f input_keyfile] [-m key_format]
ssh-keygen -e [-f input_keyfile] [-m key_format]
ssh-keygen -y [-f input_keyfile]
ssh-keygen -c [-a rounds] [-C comment] [-f keyfile] [-P passphrase]
ssh-keygen -l [-v] [-E fingerprint_hash] [-f input_keyfile]
ssh-keygen -B [-f input_keyfile]
ssh-keygen -D pkcs11
ssh-keygen -F hostname [-lv] [-f known_hosts_file]
ssh-keygen -H [-f known_hosts_file]
ssh-keygen -K [-a rounds] [-w provider]
ssh-keygen -R hostname [-f known_hosts_file]
ssh-keygen -r hostname [-g] [-f input_keyfile]
ssh-keygen -M generate [-O option] output_file
ssh-keygen -M screen [-f input_file] [-O option] output_file
ssh-keygen -I certificate_identity -s ca_key [-hU] [-D pkcs11_provider]
[-n principals] [-O option] [-V validity_interval]
[-z serial_number] file ...
ssh-keygen -L [-f input_keyfile]
ssh-keygen -A [-a rounds] [-f prefix_path]
ssh-keygen -k -f krl_file [-u] [-s ca_public] [-z version_number]
file ...
ssh-keygen -Q [-l] -f krl_file file ...
ssh-keygen -Y find-principals [-O option] -s signature_file
-f allowed_signers_file
ssh-keygen -Y match-principals -I signer_identity -f allowed_signers_file
ssh-keygen -Y check-novalidate [-O option] -n namespace -s signature_file
ssh-keygen -Y sign [-O option] -f key_file -n namespace file ...
ssh-keygen -Y verify [-O option] -f allowed_signers_file
-I signer_identity -n namespace -s signature_file
[-r revocation_file]
DESCRIPTION
ssh-keygen generates, manages and converts authentication keys for
ssh(1). ssh-keygen can create keys for use by SSH protocol version 2.
The type of key to be generated is specified with the -t option. If
invoked without any arguments, ssh-keygen will generate an RSA key.
ssh-keygen is also used to generate groups for use in Diffie-Hellman
group exchange (DH-GEX). See the MODULI GENERATION section for details.
Finally, ssh-keygen can be used to generate and update Key Revocation
Lists, and to test whether given keys have been revoked by one. See the
KEY REVOCATION LISTS section for details.
Normally each user wishing to use SSH with public key authentication runs
this once to create the authentication key in ~/.ssh/id_dsa,
passphrase may be empty to indicate no passphrase (host keys must have an
empty passphrase), or it may be a string of arbitrary length. A
passphrase is similar to a password, except it can be a phrase with a
series of words, punctuation, numbers, whitespace, or any string of
characters you want. Good passphrases are 10-30 characters long, are not
simple sentences or otherwise easily guessable (English prose has only
1-2 bits of entropy per character, and provides very bad passphrases),
and contain a mix of upper and lowercase letters, numbers, and non-
alphanumeric characters. The passphrase can be changed later by using
the -p option.
There is no way to recover a lost passphrase. If the passphrase is lost
or forgotten, a new key must be generated and the corresponding public
key copied to other machines.
ssh-keygen will by default write keys in an OpenSSH-specific format.
This format is preferred as it offers better protection for keys at rest
as well as allowing storage of key comments within the private key file
itself. The key comment may be useful to help identify the key. The
comment is initialized to "user@host" when the key is created, but can be
changed using the -c option.
It is still possible for ssh-keygen to write the previously-used PEM
format private keys using the -m flag. This may be used when generating
new keys, and existing new-format keys may be converted using this option
in conjunction with the -p (change passphrase) flag.
After a key is generated, ssh-keygen will ask where the keys should be
placed to be activated.
The options are as follows:
-A Generate host keys of all default key types (rsa, ecdsa, and
ed25519) if they do not already exist. The host keys are
generated with the default key file path, an empty passphrase,
default bits for the key type, and default comment. If -f has
also been specified, its argument is used as a prefix to the
default path for the resulting host key files. This is used by
/etc/rc to generate new host keys.
-a rounds
When saving a private key, this option specifies the number of
KDF (key derivation function, currently bcrypt_pbkdf(3)) rounds
used. Higher numbers result in slower passphrase verification
and increased resistance to brute-force password cracking (should
the keys be stolen). The default is 16 rounds.
-B Show the bubblebabble digest of specified private or public key
file.
-b bits
Specifies the number of bits in the key to create. For RSA keys,
the minimum size is 1024 bits and the default is 3072 bits.
Generally, 3072 bits is considered sufficient. DSA keys must be
exactly 1024 bits as specified by FIPS 186-2. For ECDSA keys,
the -b flag determines the key length by selecting from one of
three elliptic curve sizes: 256, 384 or 521 bits. Attempting to
use bit lengths other than these three values for ECDSA keys will
fail. ECDSA-SK, Ed25519 and Ed25519-SK keys have a fixed length
private keys, for the passphrase if the key has one, and for the
new comment.
-D pkcs11
Download the public keys provided by the PKCS#11 shared library
pkcs11. When used in combination with -s, this option indicates
that a CA key resides in a PKCS#11 token (see the CERTIFICATES
section for details).
-E fingerprint_hash
Specifies the hash algorithm used when displaying key
fingerprints. Valid options are: "md5" and "sha256". The
default is "sha256".
-e This option will read a private or public OpenSSH key file and
print to stdout a public key in one of the formats specified by
the -m option. The default export format is "RFC4716". This
option allows exporting OpenSSH keys for use by other programs,
including several commercial SSH implementations.
-F hostname | [hostname]:port
Search for the specified hostname (with optional port number) in
a known_hosts file, listing any occurrences found. This option
is useful to find hashed host names or addresses and may also be
used in conjunction with the -H option to print found keys in a
hashed format.
-f filename
Specifies the filename of the key file.
-g Use generic DNS format when printing fingerprint resource records
using the -r command.
-H Hash a known_hosts file. This replaces all hostnames and
addresses with hashed representations within the specified file;
the original content is moved to a file with a .old suffix.
These hashes may be used normally by ssh and sshd, but they do
not reveal identifying information should the file's contents be
disclosed. This option will not modify existing hashed hostnames
and is therefore safe to use on files that mix hashed and non-
hashed names.
-h When signing a key, create a host certificate instead of a user
certificate. See the CERTIFICATES section for details.
-I certificate_identity
Specify the key identity when signing a public key. See the
CERTIFICATES section for details.
-i This option will read an unencrypted private (or public) key file
in the format specified by the -m option and print an OpenSSH
compatible private (or public) key to stdout. This option allows
importing keys from other software, including several commercial
SSH implementations. The default import format is "RFC4716".
-K Download resident keys from a FIDO authenticator. Public and
private key files will be written to the current directory for
each downloaded key. If multiple FIDO authenticators are
attached, keys will be downloaded from the first touched
file or using the format described in the KEY REVOCATION LISTS
section.
-L Prints the contents of one or more certificates.
-l Show fingerprint of specified public key file. For RSA and DSA
keys ssh-keygen tries to find the matching public key file and
prints its fingerprint. If combined with -v, a visual ASCII art
representation of the key is supplied with the fingerprint.
-M generate
Generate candidate Diffie-Hellman Group Exchange (DH-GEX)
parameters for eventual use by the
`diffie-hellman-group-exchange-*' key exchange methods. The
numbers generated by this operation must be further screened
before use. See the MODULI GENERATION section for more
information.
-M screen
Screen candidate parameters for Diffie-Hellman Group Exchange.
This will accept a list of candidate numbers and test that they
are safe (Sophie Germain) primes with acceptable group
generators. The results of this operation may be added to the
/etc/moduli file. See the MODULI GENERATION section for more
information.
-m key_format
Specify a key format for key generation, the -i (import), -e
(export) conversion options, and the -p change passphrase
operation. The latter may be used to convert between OpenSSH
private key and PEM private key formats. The supported key
formats are: "RFC4716" (RFC 4716/SSH2 public or private key),
"PKCS8" (PKCS8 public or private key) or "PEM" (PEM public key).
By default OpenSSH will write newly-generated private keys in its
own format, but when converting public keys for export the
default format is "RFC4716". Setting a format of "PEM" when
generating or updating a supported private key type will cause
the key to be stored in the legacy PEM private key format.
-N new_passphrase
Provides the new passphrase.
-n principals
Specify one or more principals (user or host names) to be
included in a certificate when signing a key. Multiple
principals may be specified, separated by commas. See the
CERTIFICATES section for details.
-O option
Specify a key/value option. These are specific to the operation
that ssh-keygen has been requested to perform.
When signing certificates, one of the options listed in the
CERTIFICATES section may be specified here.
When performing moduli generation or screening, one of the
options listed in the MODULI GENERATION section may be specified.
When generating FIDO authenticator-backed keys, the options
to be signed. Valid algorithms are "sha256" and
"sha512." The default is "sha512."
print-pubkey
Print the full public key to standard output after
signature verification.
verify-time=timestamp
Specifies a time to use when validating signatures
instead of the current time. The time may be specified
as a date or time in the YYYYMMDD[Z] or in
YYYYMMDDHHMM[SS][Z] formats. Dates and times will be
interpreted in the current system time zone unless
suffixed with a Z character, which causes them to be
interpreted in the UTC time zone.
When generating SSHFP DNS records from public keys using the -r
flag, the following options are accepted:
hashalg=algorithm
Selects a hash algorithm to use when printing SSHFP
records using the -D flag. Valid algorithms are "sha1"
and "sha256". The default is to print both.
The -O option may be specified multiple times.
-P passphrase
Provides the (old) passphrase.
-p Requests changing the passphrase of a private key file instead of
creating a new private key. The program will prompt for the file
containing the private key, for the old passphrase, and twice for
the new passphrase.
-Q Test whether keys have been revoked in a KRL. If the -l option
is also specified then the contents of the KRL will be printed.
-q Silence ssh-keygen.
-R hostname | [hostname]:port
Removes all keys belonging to the specified hostname (with
optional port number) from a known_hosts file. This option is
useful to delete hashed hosts (see the -H option above).
-r hostname
Print the SSHFP fingerprint resource record named hostname for
the specified public key file.
-s ca_key
Certify (sign) a public key using the specified CA key. See the
CERTIFICATES section for details.
When generating a KRL, -s specifies a path to a CA public key
file used to revoke certificates directly by key ID or serial
number. See the KEY REVOCATION LISTS section for details.
-t dsa | ecdsa | ecdsa-sk | ed25519 | ed25519-sk | rsa
Specifies the type of key to create. The possible values are
"dsa", "ecdsa", "ecdsa-sk", "ed25519", "ed25519-sk", or "rsa".
indicates that a CA key resides in a ssh-agent(1). See the
CERTIFICATES section for more information.
-u Update a KRL. When specified with -k, keys listed via the
command line are added to the existing KRL rather than a new KRL
being created.
-V validity_interval
Specify a validity interval when signing a certificate. A
validity interval may consist of a single time, indicating that
the certificate is valid beginning now and expiring at that time,
or may consist of two times separated by a colon to indicate an
explicit time interval.
The start time may be specified as:
o The string "always" to indicate the certificate has no
specified start time.
o A date or time in the system time zone formatted as YYYYMMDD
or YYYYMMDDHHMM[SS].
o A date or time in the UTC time zone as YYYYMMDDZ or
YYYYMMDDHHMM[SS]Z.
o A relative time before the current system time consisting of
a minus sign followed by an interval in the format described
in the TIME FORMATS section of sshd_config(5).
o A raw seconds since epoch (Jan 1 1970 00:00:00 UTC) as a
hexadecimal number beginning with "0x".
The end time may be specified similarly to the start time:
o The string "forever" to indicate the certificate has no
specified end time.
o A date or time in the system time zone formatted as YYYYMMDD
or YYYYMMDDHHMM[SS].
o A date or time in the UTC time zone as YYYYMMDDZ or
YYYYMMDDHHMM[SS]Z.
o A relative time after the current system time consisting of a
plus sign followed by an interval in the format described in
the TIME FORMATS section of sshd_config(5).
o A raw seconds since epoch (Jan 1 1970 00:00:00 UTC) as a
hexadecimal number beginning with "0x".
For example:
+52w1d Valid from now to 52 weeks and one day from now.
-4w:+4w
Valid from four weeks ago to four weeks from now.
20100101123000:20110101123000
Valid from 12:30 PM, January 1st, 2010 to 12:30 PM,
January 1st, 2011.
20100101123000Z:20110101123000Z
Similar, but interpreted in the UTC time zone rather than
the system time zone.
-1d:20110101
Valid from yesterday to midnight, January 1st, 2011.
0x1:0x2000000000
generation. Multiple -v options increase the verbosity. The
maximum is 3.
-w provider
Specifies a path to a library that will be used when creating
FIDO authenticator-hosted keys, overriding the default of using
the internal USB HID support.
-Y find-principals
Find the principal(s) associated with the public key of a
signature, provided using the -s flag in an authorized signers
file provided using the -f flag. The format of the allowed
signers file is documented in the ALLOWED SIGNERS section below.
If one or more matching principals are found, they are returned
on standard output.
-Y match-principals
Find principal matching the principal name provided using the -I
flag in the authorized signers file specified using the -f flag.
If one or more matching principals are found, they are returned
on standard output.
-Y check-novalidate
Checks that a signature generated using ssh-keygen -Y sign has a
valid structure. This does not validate if a signature comes
from an authorized signer. When testing a signature, ssh-keygen
accepts a message on standard input and a signature namespace
using -n. A file containing the corresponding signature must
also be supplied using the -s flag. Successful testing of the
signature is signalled by ssh-keygen returning a zero exit
status.
-Y sign
Cryptographically sign a file or some data using an SSH key.
When signing, ssh-keygen accepts zero or more files to sign on
the command-line - if no files are specified then ssh-keygen will
sign data presented on standard input. Signatures are written to
the path of the input file with ".sig" appended, or to standard
output if the message to be signed was read from standard input.
The key used for signing is specified using the -f option and may
refer to either a private key, or a public key with the private
half available via ssh-agent(1). An additional signature
namespace, used to prevent signature confusion across different
domains of use (e.g. file signing vs email signing) must be
provided via the -n flag. Namespaces are arbitrary strings, and
may include: "file" for file signing, "email" for email signing.
For custom uses, it is recommended to use names following a
NAMESPACE@YOUR.DOMAIN pattern to generate unambiguous namespaces.
-Y verify
Request to verify a signature generated using ssh-keygen -Y sign
as described above. When verifying a signature, ssh-keygen
accepts a message on standard input and a signature namespace
using -n. A file containing the corresponding signature must
also be supplied using the -s flag, along with the identity of
the signer using -I and a list of allowed signers via the -f
flag. The format of the allowed signers file is documented in
the ALLOWED SIGNERS section below. A file containing revoked
-Z cipher
Specifies the cipher to use for encryption when writing an
OpenSSH-format private key file. The list of available ciphers
may be obtained using "ssh -Q cipher". The default is
"aes256-ctr".
-z serial_number
Specifies a serial number to be embedded in the certificate to
distinguish this certificate from others from the same CA. If
the serial_number is prefixed with a `+' character, then the
serial number will be incremented for each certificate signed on
a single command-line. The default serial number is zero.
When generating a KRL, the -z flag is used to specify a KRL
version number.
MODULI GENERATION
ssh-keygen may be used to generate groups for the Diffie-Hellman Group
Exchange (DH-GEX) protocol. Generating these groups is a two-step
process: first, candidate primes are generated using a fast, but memory
intensive process. These candidate primes are then tested for
suitability (a CPU-intensive process).
Generation of primes is performed using the -M generate option. The
desired length of the primes may be specified by the -O bits option. For
example:
# ssh-keygen -M generate -O bits=2048 moduli-2048.candidates
By default, the search for primes begins at a random point in the desired
length range. This may be overridden using the -O start option, which
specifies a different start point (in hex).
Once a set of candidates have been generated, they must be screened for
suitability. This may be performed using the -M screen option. In this
mode ssh-keygen will read candidates from standard input (or a file
specified using the -f option). For example:
# ssh-keygen -M screen -f moduli-2048.candidates moduli-2048
By default, each candidate will be subjected to 100 primality tests.
This may be overridden using the -O prime-tests option. The DH generator
value will be chosen automatically for the prime under consideration. If
a specific generator is desired, it may be requested using the -O
generator option. Valid generator values are 2, 3, and 5.
Screened DH groups may be installed in /etc/moduli. It is important that
this file contains moduli of a range of bit lengths.
A number of options are available for moduli generation and screening via
the -O flag:
lines=number
Exit after screening the specified number of lines while
performing DH candidate screening.
start-line=line-number
Start screening at the specified line number while performing DH
memory=mbytes
Specify the amount of memory to use (in megabytes) when
generating candidate moduli for DH-GEX.
start=hex-value
Specify start point (in hex) when generating candidate moduli for
DH-GEX.
generator=value
Specify desired generator (in decimal) when testing candidate
moduli for DH-GEX.
CERTIFICATES
ssh-keygen supports signing of keys to produce certificates that may be
used for user or host authentication. Certificates consist of a public
key, some identity information, zero or more principal (user or host)
names and a set of options that are signed by a Certification Authority
(CA) key. Clients or servers may then trust only the CA key and verify
its signature on a certificate rather than trusting many user/host keys.
Note that OpenSSH certificates are a different, and much simpler, format
to the X.509 certificates used in ssl(8).
ssh-keygen supports two types of certificates: user and host. User
certificates authenticate users to servers, whereas host certificates
authenticate server hosts to users. To generate a user certificate:
$ ssh-keygen -s /path/to/ca_key -I key_id /path/to/user_key.pub
The resultant certificate will be placed in /path/to/user_key-cert.pub.
A host certificate requires the -h option:
$ ssh-keygen -s /path/to/ca_key -I key_id -h /path/to/host_key.pub
The host certificate will be output to /path/to/host_key-cert.pub.
It is possible to sign using a CA key stored in a PKCS#11 token by
providing the token library using -D and identifying the CA key by
providing its public half as an argument to -s:
$ ssh-keygen -s ca_key.pub -D libpkcs11.so -I key_id user_key.pub
Similarly, it is possible for the CA key to be hosted in a ssh-agent(1).
This is indicated by the -U flag and, again, the CA key must be
identified by its public half.
$ ssh-keygen -Us ca_key.pub -I key_id user_key.pub
In all cases, key_id is a "key identifier" that is logged by the server
when the certificate is used for authentication.
Certificates may be limited to be valid for a set of principal
(user/host) names. By default, generated certificates are valid for all
users or hosts. To generate a certificate for a specified set of
principals:
$ ssh-keygen -s ca_key -I key_id -n user1,user2 user_key.pub
$ ssh-keygen -s ca_key -I key_id -h -n host.domain host_key.pub
clear Clear all enabled permissions. This is useful for clearing the
default set of permissions so permissions may be added
individually.
critical:name[=contents]
extension:name[=contents]
Includes an arbitrary certificate critical option or extension.
The specified name should include a domain suffix, e.g.
"name@example.com". If contents is specified then it is included
as the contents of the extension/option encoded as a string,
otherwise the extension/option is created with no contents
(usually indicating a flag). Extensions may be ignored by a
client or server that does not recognise them, whereas unknown
critical options will cause the certificate to be refused.
force-command=command
Forces the execution of command instead of any shell or command
specified by the user when the certificate is used for
authentication.
no-agent-forwarding
Disable ssh-agent(1) forwarding (permitted by default).
no-port-forwarding
Disable port forwarding (permitted by default).
no-pty Disable PTY allocation (permitted by default).
no-user-rc
Disable execution of ~/.ssh/rc by sshd(8) (permitted by default).
no-x11-forwarding
Disable X11 forwarding (permitted by default).
permit-agent-forwarding
Allows ssh-agent(1) forwarding.
permit-port-forwarding
Allows port forwarding.
permit-pty
Allows PTY allocation.
permit-user-rc
Allows execution of ~/.ssh/rc by sshd(8).
permit-X11-forwarding
Allows X11 forwarding.
no-touch-required
Do not require signatures made using this key include
demonstration of user presence (e.g. by having the user touch the
authenticator). This option only makes sense for the FIDO
authenticator algorithms ecdsa-sk and ed25519-sk.
source-address=address_list
Restrict the source addresses from which the certificate is
considered valid. The address_list is a comma-separated list of
other methods may be supported in the future.
At present, no standard options are valid for host keys.
Finally, certificates may be defined with a validity lifetime. The -V
option allows specification of certificate start and end times. A
certificate that is presented at a time outside this range will not be
considered valid. By default, certificates are valid from the UNIX Epoch
to the distant future.
For certificates to be used for user or host authentication, the CA
public key must be trusted by sshd(8) or ssh(1). Refer to those manual
pages for details.
FIDO AUTHENTICATOR
ssh-keygen is able to generate FIDO authenticator-backed keys, after
which they may be used much like any other key type supported by OpenSSH,
so long as the hardware authenticator is attached when the keys are used.
FIDO authenticators generally require the user to explicitly authorise
operations by touching or tapping them. FIDO keys consist of two parts:
a key handle part stored in the private key file on disk, and a per-
device private key that is unique to each FIDO authenticator and that
cannot be exported from the authenticator hardware. These are combined
by the hardware at authentication time to derive the real key that is
used to sign authentication challenges. Supported key types are ecdsa-sk
and ed25519-sk.
The options that are valid for FIDO keys are:
application
Override the default FIDO application/origin string of "ssh:".
This may be useful when generating host or domain-specific
resident keys. The specified application string must begin with
"ssh:".
challenge=path
Specifies a path to a challenge string that will be passed to the
FIDO authenticator during key generation. The challenge string
may be used as part of an out-of-band protocol for key enrollment
(a random challenge is used by default).
device Explicitly specify a fido(4) device to use, rather than letting
the authenticator middleware select one.
no-touch-required
Indicate that the generated private key should not require touch
events (user presence) when making signatures. Note that sshd(8)
will refuse such signatures by default, unless overridden via an
authorized_keys option.
resident
Indicate that the key handle should be stored on the FIDO
authenticator itself. This makes it easier to use the
authenticator on multiple computers. Resident keys may be
supported on FIDO2 authenticators and typically require that a
PIN be set on the authenticator prior to generation. Resident
keys may be loaded off the authenticator using ssh-add(1).
Storing both parts of a key on a FIDO authenticator increases the
likelihood of an attacker being able to use a stolen
Indicate that this private key should require user verification
for each signature. Not all FIDO authenticators support this
option. Currently PIN authentication is the only supported
verification method, but other methods may be supported in the
future.
write-attestation=path
May be used at key generation time to record the attestation data
returned from FIDO authenticators during key generation. This
information is potentially sensitive. By default, this
information is discarded.
KEY REVOCATION LISTS
ssh-keygen is able to manage OpenSSH format Key Revocation Lists (KRLs).
These binary files specify keys or certificates to be revoked using a
compact format, taking as little as one bit per certificate if they are
being revoked by serial number.
KRLs may be generated using the -k flag. This option reads one or more
files from the command line and generates a new KRL. The files may
either contain a KRL specification (see below) or public keys, listed one
per line. Plain public keys are revoked by listing their hash or
contents in the KRL and certificates revoked by serial number or key ID
(if the serial is zero or not available).
Revoking keys using a KRL specification offers explicit control over the
types of record used to revoke keys and may be used to directly revoke
certificates by serial number or key ID without having the complete
original certificate on hand. A KRL specification consists of lines
containing one of the following directives followed by a colon and some
directive-specific information.
serial: serial_number[-serial_number]
Revokes a certificate with the specified serial number. Serial
numbers are 64-bit values, not including zero and may be
expressed in decimal, hex or octal. If two serial numbers are
specified separated by a hyphen, then the range of serial numbers
including and between each is revoked. The CA key must have been
specified on the ssh-keygen command line using the -s option.
id: key_id
Revokes a certificate with the specified key ID string. The CA
key must have been specified on the ssh-keygen command line using
the -s option.
key: public_key
Revokes the specified key. If a certificate is listed, then it
is revoked as a plain public key.
sha1: public_key
Revokes the specified key by including its SHA1 hash in the KRL.
sha256: public_key
Revokes the specified key by including its SHA256 hash in the
KRL. KRLs that revoke keys by SHA256 hash are not supported by
OpenSSH versions prior to 7.9.
hash: fingerprint
Revokes a key using a fingerprint hash, as obtained from a
It is also possible, given a KRL, to test whether it revokes a particular
key (or keys). The -Q flag will query an existing KRL, testing each key
specified on the command line. If any key listed on the command line has
been revoked (or an error encountered) then ssh-keygen will exit with a
non-zero exit status. A zero exit status will only be returned if no key
was revoked.
ALLOWED SIGNERS
When verifying signatures, ssh-keygen uses a simple list of identities
and keys to determine whether a signature comes from an authorized
source. This "allowed signers" file uses a format patterned after the
AUTHORIZED_KEYS FILE FORMAT described in sshd(8). Each line of the file
contains the following space-separated fields: principals, options,
keytype, base64-encoded key. Empty lines and lines starting with a `#'
are ignored as comments.
The principals field is a pattern-list (see PATTERNS in ssh_config(5))
consisting of one or more comma-separated USER@DOMAIN identity patterns
that are accepted for signing. When verifying, the identity presented
via the -I option must match a principals pattern in order for the
corresponding key to be considered acceptable for verification.
The options (if present) consist of comma-separated option
specifications. No spaces are permitted, except within double quotes.
The following option specifications are supported (note that option
keywords are case-insensitive):
cert-authority
Indicates that this key is accepted as a certificate authority
(CA) and that certificates signed by this CA may be accepted for
verification.
namespaces=namespace-list
Specifies a pattern-list of namespaces that are accepted for this
key. If this option is present, the signature namespace embedded
in the signature object and presented on the verification
command-line must match the specified list before the key will be
considered acceptable.
valid-after=timestamp
Indicates that the key is valid for use at or after the specified
timestamp, which may be a date or time in the YYYYMMDD[Z] or
YYYYMMDDHHMM[SS][Z] formats. Dates and times will be interpreted
in the current system time zone unless suffixed with a Z
character, which causes them to be interpreted in the UTC time
zone.
valid-before=timestamp
Indicates that the key is valid for use at or before the
specified timestamp.
When verifying signatures made by certificates, the expected principal
name must match both the principals pattern in the allowed signers file
and the principals embedded in the certificate itself.
An example allowed signers file:
# Comments allowed at start of line
SSH_SK_PROVIDER
Specifies a path to a library that will be used when loading any
FIDO authenticator-hosted keys, overriding the default of using
the built-in USB HID support.
FILES
~/.ssh/id_dsa
~/.ssh/id_ecdsa
~/.ssh/id_ecdsa_sk
~/.ssh/id_ed25519
~/.ssh/id_ed25519_sk
~/.ssh/id_rsa
Contains the DSA, ECDSA, authenticator-hosted ECDSA, Ed25519,
authenticator-hosted Ed25519 or RSA authentication identity of
the user. This file should not be readable by anyone but the
user. It is possible to specify a passphrase when generating the
key; that passphrase will be used to encrypt the private part of
this file using 128-bit AES. This file is not automatically
accessed by ssh-keygen but it is offered as the default file for
the private key. ssh(1) will read this file when a login attempt
is made.
~/.ssh/id_dsa.pub
~/.ssh/id_ecdsa.pub
~/.ssh/id_ecdsa_sk.pub
~/.ssh/id_ed25519.pub
~/.ssh/id_ed25519_sk.pub
~/.ssh/id_rsa.pub
Contains the DSA, ECDSA, authenticator-hosted ECDSA, Ed25519,
authenticator-hosted Ed25519 or RSA public key for
authentication. The contents of this file should be added to
~/.ssh/authorized_keys on all machines where the user wishes to
log in using public key authentication. There is no need to keep
the contents of this file secret.
/etc/moduli
Contains Diffie-Hellman groups used for DH-GEX. The file format
is described in moduli(5).
SEE ALSO
ssh(1), ssh-add(1), ssh-agent(1), moduli(5), sshd(8)
The Secure Shell (SSH) Public Key File Format, RFC 4716, 2006.
AUTHORS
OpenSSH is a derivative of the original and free ssh 1.2.12 release by
Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo
de Raadt and Dug Song removed many bugs, re-added newer features and
created OpenSSH. Markus Friedl contributed the support for SSH protocol
versions 1.5 and 2.0.
FreeBSD 14.0-RELEASE-p11 July 23, 2023 FreeBSD 14.0-RELEASE-p11