FreeBSD manual
download PDF document: tcpdump.1.pdf
TCPDUMP(1) FreeBSD General Commands Manual TCPDUMP(1)
NAME
tcpdump - dump traffic on a network
SYNOPSIS
tcpdump [ -AbdDefhHIJKlLnNOpqStuUvxX# ] [ -B buffer_size ]
[ -c count ] [ --count ] [ -C file_size ]
[ -E spi@ipaddr algo:secret,... ]
[ -F file ] [ -G rotate_seconds ] [ -i interface ]
[ --immediate-mode ] [ -j tstamp_type ] [ -m module ]
[ -M secret ] [ --number ] [ --print ] [ -Q in|out|inout ]
[ -r file ] [ -s snaplen ] [ -T type ] [ --version ]
[ -V file ] [ -w file ] [ -W filecount ] [ -y datalinktype ]
[ -z postrotate-command ] [ -Z user ]
[ --time-stamp-precision=tstamp_precision ]
[ --micro ] [ --nano ]
[ expression ]
DESCRIPTION
Tcpdump prints out a description of the contents of packets on a
network interface that match the Boolean expression (see pcap-filter(7)
for the expression syntax); the description is preceded by a time
stamp, printed, by default, as hours, minutes, seconds, and fractions
of a second since midnight. It can also be run with the -w flag, which
causes it to save the packet data to a file for later analysis, and/or
with the -r flag, which causes it to read from a saved packet file
rather than to read packets from a network interface. It can also be
run with the -V flag, which causes it to read a list of saved packet
files. In all cases, only packets that match expression will be
processed by tcpdump.
Tcpdump will, if not run with the -c flag, continue capturing packets
until it is interrupted by a SIGINT signal (generated, for example, by
typing your interrupt character, typically control-C) or a SIGTERM
signal (typically generated with the kill(1) command); if run with the
-c flag, it will capture packets until it is interrupted by a SIGINT or
SIGTERM signal or the specified number of packets have been processed.
When tcpdump finishes capturing packets, it will report counts of:
packets ``captured'' (this is the number of packets that tcpdump
has received and processed);
packets ``received by filter'' (the meaning of this depends on
the OS on which you're running tcpdump, and possibly on the way
the OS was configured - if a filter was specified on the command
line, on some OSes it counts packets regardless of whether they
were matched by the filter expression and, even if they were
matched by the filter expression, regardless of whether tcpdump
has read and processed them yet, on other OSes it counts only
packets that were matched by the filter expression regardless of
whether tcpdump has read and processed them yet, and on other
OSes it counts only packets that were matched by the filter
expression and were processed by tcpdump);
packets ``dropped by kernel'' (this is the number of packets
that were dropped, due to a lack of buffer space, by the packet
capture mechanism in the OS on which tcpdump is running, if the
platforms, such as macOS, the ``status'' character is not set by
default, so you must set it with stty(1) in order to use it) and will
continue capturing packets. On platforms that do not support the
SIGINFO signal, the same can be achieved by using the SIGUSR1 signal.
Using the SIGUSR2 signal along with the -w flag will forcibly flush the
packet buffer into the output file.
Reading packets from a network interface may require that you have
special privileges; see the pcap(3PCAP) man page for details. Reading
a saved packet file doesn't require special privileges.
OPTIONS
-A Print each packet (minus its link level header) in ASCII. Handy
for capturing web pages.
-b Print the AS number in BGP packets in ASDOT notation rather than
ASPLAIN notation.
-B buffer_size
--buffer-size=buffer_size
Set the operating system capture buffer size to buffer_size, in
units of KiB (1024 bytes).
-c count
Exit after receiving count packets.
--count
Print only on stdout the packet count when reading capture
file(s) instead of parsing/printing the packets. If a filter is
specified on the command line, tcpdump counts only packets that
were matched by the filter expression.
-C file_size
Before writing a raw packet to a savefile, check whether the
file is currently larger than file_size and, if so, close the
current savefile and open a new one. Savefiles after the first
savefile will have the name specified with the -w flag, with a
number after it, starting at 1 and continuing upward. The units
of file_size are millions of bytes (1,000,000 bytes, not
1,048,576 bytes).
-d Dump the compiled packet-matching code in a human readable form
to standard output and stop.
Please mind that although code compilation is always DLT-
specific, typically it is impossible (and unnecessary) to
specify which DLT to use for the dump because tcpdump uses
either the DLT of the input pcap file specified with -r, or the
default DLT of the network interface specified with -i, or the
particular DLT of the network interface specified with -y and -i
respectively. In these cases the dump shows the same exact code
that would filter the input file or the network interface
without -d.
However, when neither -r nor -i is specified, specifying -d
prevents tcpdump from guessing a suitable network interface (see
-i). In this case the DLT defaults to EN10MB and can be set to
another valid value manually with -y.
--list-interfaces
Print the list of the network interfaces available on the system
and on which tcpdump can capture packets. For each network
interface, a number and an interface name, possibly followed by
a text description of the interface, are printed. The interface
name or the number can be supplied to the -i flag to specify an
interface on which to capture.
This can be useful on systems that don't have a command to list
them (e.g., Windows systems, or UNIX systems lacking ifconfig
-a); the number can be useful on Windows 2000 and later systems,
where the interface name is a somewhat complex string.
The -D flag will not be supported if tcpdump was built with an
older version of libpcap that lacks the pcap_findalldevs(3PCAP)
function.
-e Print the link-level header on each dump line. This can be
used, for example, to print MAC layer addresses for protocols
such as Ethernet and IEEE 802.11.
-E Use spi@ipaddr algo:secret for decrypting IPsec ESP packets that
are addressed to addr and contain Security Parameter Index value
spi. This combination may be repeated with comma or newline
separation.
Note that setting the secret for IPv4 ESP packets is supported
at this time.
Algorithms may be des-cbc, 3des-cbc, blowfish-cbc, rc3-cbc,
cast128-cbc, or none. The default is des-cbc. The ability to
decrypt packets is only present if tcpdump was compiled with
cryptography enabled.
secret is the ASCII text for ESP secret key. If preceded by 0x,
then a hex value will be read.
The option assumes RFC 2406 ESP, not RFC 1827 ESP. The option
is only for debugging purposes, and the use of this option with
a true `secret' key is discouraged. By presenting IPsec secret
key onto command line you make it visible to others, via ps(1)
and other occasions.
In addition to the above syntax, the syntax file name may be
used to have tcpdump read the provided file in. The file is
opened upon receiving the first ESP packet, so any special
permissions that tcpdump may have been given should already have
been given up.
-f Print `foreign' IPv4 addresses numerically rather than
symbolically (this option is intended to get around serious
brain damage in Sun's NIS server -- usually it hangs forever
translating non-local internet numbers).
The test for `foreign' IPv4 addresses is done using the IPv4
address and netmask of the interface on that capture is being
done. If that address or netmask are not available, either
because the interface on that capture is being done has no
address or netmask or because it is the "any" pseudo-interface,
-G rotate_seconds
If specified, rotates the dump file specified with the -w option
every rotate_seconds seconds. Savefiles will have the name
specified by -w which should include a time format as defined by
strftime(3). If no time format is specified, each new file will
overwrite the previous. Whenever a generated filename is not
unique, tcpdump will overwrite the pre-existing data; providing
a time specification that is coarser than the capture period is
therefore not advised.
If used in conjunction with the -C option, filenames will take
the form of `file<count>'.
-h
--help Print the tcpdump and libpcap version strings, print a usage
message, and exit.
--version
Print the tcpdump and libpcap version strings and exit.
-H Attempt to detect 802.11s draft mesh headers.
-i interface
--interface=interface
Listen, report the list of link-layer types, report the list of
time stamp types, or report the results of compiling a filter
expression on interface. If unspecified and if the -d flag is
not given, tcpdump searches the system interface list for the
lowest numbered, configured up interface (excluding loopback),
which may turn out to be, for example, ``eth0''.
On Linux systems with 2.2 or later kernels and on recent
versions of macOS and Solaris, an interface argument of ``any''
can be used to capture packets from all interfaces. Note that
captures on the ``any'' pseudo-interface will not be done in
promiscuous mode.
If the -D flag is supported, an interface number as printed by
that flag can be used as the interface argument, if no interface
on the system has that number as a name.
-I
--monitor-mode
Put the interface in "monitor mode"; this is supported only on
IEEE 802.11 Wi-Fi interfaces, and supported only on some
operating systems.
Note that in monitor mode the adapter might disassociate from
the network with which it's associated, so that you will not be
able to use any wireless networks with that adapter. This could
prevent accessing files on a network server, or resolving host
names or network addresses, if you are capturing in monitor mode
and are not connected to another network with another adapter.
This flag will affect the output of the -L flag. If -I isn't
specified, only those link-layer types available when not in
monitor mode will be shown; if -I is specified, only those link-
layer types available when in monitor mode will be shown.
pipe.
-j tstamp_type
--time-stamp-type=tstamp_type
Set the time stamp type for the capture to tstamp_type. The
names to use for the time stamp types are given in
pcap-tstamp(7); not all the types listed there will necessarily
be valid for any given interface.
-J
--list-time-stamp-types
List the supported time stamp types for the interface and exit.
If the time stamp type cannot be set for the interface, no time
stamp types are listed.
--time-stamp-precision=tstamp_precision
When capturing, set the time stamp precision for the capture to
tstamp_precision. Note that availability of high precision time
stamps (nanoseconds) and their actual accuracy is platform and
hardware dependent. Also note that when writing captures made
with nanosecond accuracy to a savefile, the time stamps are
written with nanosecond resolution, and the file is written with
a different magic number, to indicate that the time stamps are
in seconds and nanoseconds; not all programs that read pcap
savefiles will be able to read those captures.
When reading a savefile, convert time stamps to the precision
specified by timestamp_precision, and display them with that
resolution. If the precision specified is less than the
precision of time stamps in the file, the conversion will lose
precision.
The supported values for timestamp_precision are micro for
microsecond resolution and nano for nanosecond resolution. The
default is microsecond resolution.
--micro
--nano Shorthands for --time-stamp-precision=micro or
--time-stamp-precision=nano, adjusting the time stamp precision
accordingly. When reading packets from a savefile, using
--micro truncates time stamps if the savefile was created with
nanosecond precision. In contrast, a savefile created with
microsecond precision will have trailing zeroes added to the
time stamp when --nano is used.
-K
--dont-verify-checksums
Don't attempt to verify IP, TCP, or UDP checksums. This is
useful for interfaces that perform some or all of those checksum
calculation in hardware; otherwise, all outgoing TCP checksums
will be flagged as bad.
-l Make stdout line buffered. Useful if you want to see the data
while capturing it. E.g.,
tcpdump -l | tee dat
or
tcpdump -l > dat & tail -f dat
this is buffered on all platforms, including Windows.
-L
--list-data-link-types
List the known data link types for the interface, in the
specified mode, and exit. The list of known data link types may
be dependent on the specified mode; for example, on some
platforms, a Wi-Fi interface might support one set of data link
types when not in monitor mode (for example, it might support
only fake Ethernet headers, or might support 802.11 headers but
not support 802.11 headers with radio information) and another
set of data link types when in monitor mode (for example, it
might support 802.11 headers, or 802.11 headers with radio
information, only in monitor mode).
-m module
Load SMI MIB module definitions from file module. This option
can be used several times to load several MIB modules into
tcpdump.
-M secret
Use secret as a shared secret for validating the digests found
in TCP segments with the TCP-MD5 option (RFC 2385), if present.
-n Don't convert addresses (i.e., host addresses, port numbers,
etc.) to names.
-N Don't print domain name qualification of host names. E.g., if
you give this flag then tcpdump will print ``nic'' instead of
``nic.ddn.mil''.
-#
--number
Print an optional packet number at the beginning of the line.
-O
--no-optimize
Do not run the packet-matching code optimizer. This is useful
only if you suspect a bug in the optimizer.
-p
--no-promiscuous-mode
Don't put the interface into promiscuous mode. Note that the
interface might be in promiscuous mode for some other reason;
hence, `-p' cannot be used as an abbreviation for `ether host
{local-hw-addr} or ether broadcast'.
--print
Print parsed packet output, even if the raw packets are being
saved to a file with the -w flag.
-Q direction
--direction=direction
Choose send/receive direction direction for which packets should
be captured. Possible values are `in', `out' and `inout'. Not
available on all platforms.
-q Quick (quiet?) output. Print less protocol information so
output lines are shorter.
--absolute-tcp-sequence-numbers
Print absolute, rather than relative, TCP sequence numbers.
-s snaplen
--snapshot-length=snaplen
Snarf snaplen bytes of data from each packet rather than the
default of 262144 bytes. Packets truncated because of a limited
snapshot are indicated in the output with ``[|proto]'', where
proto is the name of the protocol level at which the truncation
has occurred.
Note that taking larger snapshots both increases the amount of
time it takes to process packets and, effectively, decreases the
amount of packet buffering. This may cause packets to be lost.
Note also that taking smaller snapshots will discard data from
protocols above the transport layer, which loses information
that may be important. NFS and AFS requests and replies, for
example, are very large, and much of the detail won't be
available if a too-short snapshot length is selected.
If you need to reduce the snapshot size below the default, you
should limit snaplen to the smallest number that will capture
the protocol information you're interested in. Setting snaplen
to 0 sets it to the default of 262144, for backwards
compatibility with recent older versions of tcpdump.
-T type
Force packets selected by "expression" to be interpreted the
specified type. Currently known types are aodv (Ad-hoc On-
demand Distance Vector protocol), carp (Common Address
Redundancy Protocol), cnfp (Cisco NetFlow protocol), domain
(Domain Name System), lmp (Link Management Protocol), pgm
(Pragmatic General Multicast), pgm_zmtp1 (ZMTP/1.0 inside
PGM/EPGM), ptp (Precision Time Protocol), radius (RADIUS), resp
(REdis Serialization Protocol), rpc (Remote Procedure Call),
rtcp (Real-Time Applications control protocol), rtp (Real-Time
Applications protocol), snmp (Simple Network Management
Protocol), someip (SOME/IP), tftp (Trivial File Transfer
Protocol), vat (Visual Audio Tool), vxlan (Virtual eXtensible
Local Area Network), wb (distributed White Board) and zmtp1
(ZeroMQ Message Transport Protocol 1.0).
Note that the pgm type above affects UDP interpretation only,
the native PGM is always recognised as IP protocol 113
regardless. UDP-encapsulated PGM is often called "EPGM" or
"PGM/UDP".
Note that the pgm_zmtp1 type above affects interpretation of
both native PGM and UDP at once. During the native PGM decoding
the application data of an ODATA/RDATA packet would be decoded
as a ZeroMQ datagram with ZMTP/1.0 frames. During the UDP
decoding in addition to that any UDP packet would be treated as
an encapsulated PGM packet.
-t Don't print a timestamp on each dump line.
-tt Print the timestamp, as seconds since January 1, 1970, 00:00:00,
UTC, and fractions of a second since that time, on each dump
line.
line.
-ttttt Print a delta (microsecond or nanosecond resolution depending on
the --time-stamp-precision option) between current and first
line on each dump line. The default is microsecond resolution.
-u Print undecoded NFS handles.
-U
--packet-buffered
If the -w option is not specified, or if it is specified but the
--print flag is also specified, make the printed packet output
``packet-buffered''; i.e., as the description of the contents of
each packet is printed, it will be written to the standard
output, rather than, when not writing to a terminal, being
written only when the output buffer fills.
If the -w option is specified, make the saved raw packet output
``packet-buffered''; i.e., as each packet is saved, it will be
written to the output file, rather than being written only when
the output buffer fills.
The -U flag will not be supported if tcpdump was built with an
older version of libpcap that lacks the pcap_dump_flush(3PCAP)
function.
-v When parsing and printing, produce (slightly more) verbose
output. For example, the time to live, identification, total
length and options in an IP packet are printed. Also enables
additional packet integrity checks such as verifying the IP and
ICMP header checksum.
When writing to a file with the -w option and at the same time
not reading from a file with the -r option, report to stderr,
once per second, the number of packets captured. In Solaris,
FreeBSD and possibly other operating systems this periodic
update currently can cause loss of captured packets on their way
from the kernel to tcpdump.
-vv Even more verbose output. For example, additional fields are
printed from NFS reply packets, and SMB packets are fully
decoded.
-vvv Even more verbose output. For example, telnet SB ... SE options
are printed in full. With -X Telnet options are printed in hex
as well.
-V file
Read a list of filenames from file. Standard input is used if
file is ``-''.
-w file
Write the raw packets to file rather than parsing and printing
them out. They can later be printed with the -r option.
Standard output is used if file is ``-''.
This output will be buffered if written to a file or pipe, so a
program reading from the file or pipe may not see packets for an
arbitrary amount of time after they are received. Use the -U
and doesn't add an extension when writing them (it uses magic
numbers in the file header instead). However, many operating
systems and applications will use the extension if it is present
and adding one (e.g. .pcap) is recommended.
See pcap-savefile(5) for a description of the file format.
-W filecount
Used in conjunction with the -C option, this will limit the
number of files created to the specified number, and begin
overwriting files from the beginning, thus creating a 'rotating'
buffer. In addition, it will name the files with enough leading
0s to support the maximum number of files, allowing them to sort
correctly.
Used in conjunction with the -G option, this will limit the
number of rotated dump files that get created, exiting with
status 0 when reaching the limit.
If used in conjunction with both -C and -G, the -W option will
currently be ignored, and will only affect the file name.
-x When parsing and printing, in addition to printing the headers
of each packet, print the data of each packet (minus its link
level header) in hex. The smaller of the entire packet or
snaplen bytes will be printed. Note that this is the entire
link-layer packet, so for link layers that pad (e.g. Ethernet),
the padding bytes will also be printed when the higher layer
packet is shorter than the required padding. In the current
implementation this flag may have the same effect as -xx if the
packet is truncated.
-xx When parsing and printing, in addition to printing the headers
of each packet, print the data of each packet, including its
link level header, in hex.
-X When parsing and printing, in addition to printing the headers
of each packet, print the data of each packet (minus its link
level header) in hex and ASCII. This is very handy for
analysing new protocols. In the current implementation this
flag may have the same effect as -XX if the packet is truncated.
-XX When parsing and printing, in addition to printing the headers
of each packet, print the data of each packet, including its
link level header, in hex and ASCII.
-y datalinktype
--linktype=datalinktype
Set the data link type to use while capturing packets (see -L)
or just compiling and dumping packet-matching code (see -d) to
datalinktype.
-z postrotate-command
Used in conjunction with the -C or -G options, this will make
tcpdump run " postrotate-command file " where file is the
savefile being closed after each rotation. For example,
specifying -z gzip or -z bzip2 will compress each savefile using
gzip or bzip2.
make the flags & arguments arrangements and execute the command
that you want.
-Z user
--relinquish-privileges=user
If tcpdump is running as root, after opening the capture device
or input savefile, but before opening any savefiles for output,
change the user ID to user and the group ID to the primary group
of user.
This behavior can also be enabled by default at compile time.
expression
selects which packets will be dumped. If no expression is
given, all packets on the net will be dumped. Otherwise, only
packets for which expression is `true' will be dumped.
For the expression syntax, see pcap-filter(7).
The expression argument can be passed to tcpdump as either a
single Shell argument, or as multiple Shell arguments, whichever
is more convenient. Generally, if the expression contains Shell
metacharacters, such as backslashes used to escape protocol
names, it is easier to pass it as a single, quoted argument
rather than to escape the Shell metacharacters. Multiple
arguments are concatenated with spaces before being parsed.
EXAMPLES
To print all packets arriving at or departing from sundown:
tcpdump host sundown
To print traffic between helios and either hot or ace:
tcpdump host helios and \( hot or ace \)
To print all IP packets between ace and any host except helios:
tcpdump ip host ace and not helios
To print all traffic between local hosts and hosts at Berkeley:
tcpdump net ucb-ether
To print all ftp traffic through internet gateway snup: (note that the
expression is quoted to prevent the shell from (mis-)interpreting the
parentheses):
tcpdump 'gateway snup and (port ftp or ftp-data)'
To print traffic neither sourced from nor destined for local hosts (if
you gateway to one other net, this stuff should never make it onto your
local net).
tcpdump ip and not net localnet
To print the start and end packets (the SYN and FIN packets) of each
TCP conversation that involves a non-local host.
tcpdump 'tcp[tcpflags] & (tcp-syn|tcp-fin) != 0 and not src and dst net localnet'
To print the TCP packets with flags RST and ACK both set. (i.e. select
only the RST and ACK flags in the flags field, and if the result is
"RST and ACK both set", match)
tcpdump 'tcp[tcpflags] & (tcp-rst|tcp-ack) == (tcp-rst|tcp-ack)'
To print IP broadcast or multicast packets that were not sent via
Ethernet broadcast or multicast:
tcpdump 'ether[0] & 1 = 0 and ip[16] >= 224'
To print all ICMP packets that are not echo requests/replies (i.e., not
ping packets):
tcpdump 'icmp[icmptype] != icmp-echo and icmp[icmptype] != icmp-echoreply'
OUTPUT FORMAT
The output of tcpdump is protocol dependent. The following gives a
brief description and examples of most of the formats.
Timestamps
By default, all output lines are preceded by a timestamp. The
timestamp is the current clock time in the form
hh:mm:ss.frac
and is as accurate as the kernel's clock. The timestamp reflects the
time the kernel applied a time stamp to the packet. No attempt is made
to account for the time lag between when the network interface finished
receiving the packet from the network and when the kernel applied a
time stamp to the packet; that time lag could include a delay between
the time when the network interface finished receiving a packet from
the network and the time when an interrupt was delivered to the kernel
to get it to read the packet and a delay between the time when the
kernel serviced the `new packet' interrupt and the time when it applied
a time stamp to the packet.
Link Level Headers
If the '-e' option is given, the link level header is printed out. On
Ethernets, the source and destination addresses, protocol, and packet
length are printed.
On FDDI networks, the '-e' option causes tcpdump to print the `frame
control' field, the source and destination addresses, and the packet
length. (The `frame control' field governs the interpretation of the
rest of the packet. Normal packets (such as those containing IP
datagrams) are `async' packets, with a priority value between 0 and 7;
for example, `async4'. Such packets are assumed to contain an 802.2
Logical Link Control (LLC) packet; the LLC header is printed if it is
not an ISO datagram or a so-called SNAP packet.
On Token Ring networks, the '-e' option causes tcpdump to print the
`access control' and `frame control' fields, the source and destination
addresses, and the packet length. As on FDDI networks, packets are
assumed to contain an LLC packet. Regardless of whether the '-e'
option is specified or not, the source routing information is printed
for source-routed packets.
On 802.11 networks, the '-e' option causes tcpdump to print the `frame
control' fields, all of the addresses in the 802.11 header, and the
packet length. As on FDDI networks, packets are assumed to contain an
LLC packet.
(N.B.: The following description assumes familiarity with the SLIP
compression algorithm described in RFC 1144.)
by which the sequence number (or sequence number and ack) has changed.
If it is not a special case, zero or more changes are printed. A
change is indicated by U (urgent pointer), W (window), A (ack), S
(sequence number), and I (packet ID), followed by a delta (+n or -n),
or a new value (=n). Finally, the amount of data in the packet and
compressed header length are printed.
For example, the following line shows an outbound compressed TCP
packet, with an implicit connection identifier; the ack has changed by
6, the sequence number by 49, and the packet ID by 6; there are 3 bytes
of data and 6 bytes of compressed header:
O ctcp * A+6 S+49 I+6 3 (6)
ARP/RARP Packets
ARP/RARP output shows the type of request and its arguments. The
format is intended to be self explanatory. Here is a short sample
taken from the start of an `rlogin' from host rtsg to host csam:
arp who-has csam tell rtsg
arp reply csam is-at CSAM
The first line says that rtsg sent an ARP packet asking for the
Ethernet address of internet host csam. Csam replies with its Ethernet
address (in this example, Ethernet addresses are in caps and internet
addresses in lower case).
This would look less redundant if we had done tcpdump -n:
arp who-has 128.3.254.6 tell 128.3.254.68
arp reply 128.3.254.6 is-at 02:07:01:00:01:c4
If we had done tcpdump -e, the fact that the first packet is broadcast
and the second is point-to-point would be visible:
RTSG Broadcast 0806 64: arp who-has csam tell rtsg
CSAM RTSG 0806 64: arp reply csam is-at CSAM
For the first packet this says the Ethernet source address is RTSG, the
destination is the Ethernet broadcast address, the type field contained
hex 0806 (type ETHER_ARP) and the total length was 64 bytes.
IPv4 Packets
If the link-layer header is not being printed, for IPv4 packets, IP is
printed after the time stamp.
If the -v flag is specified, information from the IPv4 header is shown
in parentheses after the IP or the link-layer header. The general
format of this information is:
tos tos, ttl ttl, id id, offset offset, flags [flags], proto proto, length length, options (options)
tos is the type of service field; if the ECN bits are non-zero, those
are reported as ECT(1), ECT(0), or CE. ttl is the time-to-live; it is
not reported if it is zero. id is the IP identification field. offset
is the fragment offset field; it is printed whether this is part of a
fragmented datagram or not. flags are the MF and DF flags; + is
reported if MF is set, and DF is reported if F is set. If neither are
set, . is reported. proto is the protocol ID field. length is the
total length field. options are the IP options, if any.
Next, for TCP and UDP packets, the source and destination IP addresses
and TCP or UDP ports, with a dot between each IP address and its
corresponding port, will be printed, with a > separating the source and
destination. For other protocols, the addresses will be printed, with
TCP Packets
(N.B.:The following description assumes familiarity with the TCP
protocol described in RFC 793. If you are not familiar with the
protocol, this description will not be of much use to you.)
The general format of a TCP protocol line is:
src > dst: Flags [tcpflags], seq data-seqno, ack ackno, win window, urg urgent, options [opts], length len
Src and dst are the source and destination IP addresses and ports.
Tcpflags are some combination of S (SYN), F (FIN), P (PSH), R (RST), U
(URG), W (CWR), E (ECE) or `.' (ACK), or `none' if no flags are set.
Data-seqno describes the portion of sequence space covered by the data
in this packet (see example below). Ackno is sequence number of the
next data expected the other direction on this connection. Window is
the number of bytes of receive buffer space available the other
direction on this connection. Urg indicates there is `urgent' data in
the packet. Opts are TCP options (e.g., mss 1024). Len is the length
of payload data.
Iptype, Src, dst, and flags are always present. The other fields
depend on the contents of the packet's TCP protocol header and are
output only if appropriate.
Here is the opening portion of an rlogin from host rtsg to host csam.
IP rtsg.1023 > csam.login: Flags [S], seq 768512:768512, win 4096, opts [mss 1024]
IP csam.login > rtsg.1023: Flags [S.], seq, 947648:947648, ack 768513, win 4096, opts [mss 1024]
IP rtsg.1023 > csam.login: Flags [.], ack 1, win 4096
IP rtsg.1023 > csam.login: Flags [P.], seq 1:2, ack 1, win 4096, length 1
IP csam.login > rtsg.1023: Flags [.], ack 2, win 4096
IP rtsg.1023 > csam.login: Flags [P.], seq 2:21, ack 1, win 4096, length 19
IP csam.login > rtsg.1023: Flags [P.], seq 1:2, ack 21, win 4077, length 1
IP csam.login > rtsg.1023: Flags [P.], seq 2:3, ack 21, win 4077, urg 1, length 1
IP csam.login > rtsg.1023: Flags [P.], seq 3:4, ack 21, win 4077, urg 1, length 1
The first line says that TCP port 1023 on rtsg sent a packet to port
login on csam. The S indicates that the SYN flag was set. The packet
sequence number was 768512 and it contained no data. (The notation is
`first:last' which means `sequence numbers first up to but not
including last'.) There was no piggy-backed ACK, the available receive
window was 4096 bytes and there was a max-segment-size option
requesting an MSS of 1024 bytes.
Csam replies with a similar packet except it includes a piggy-backed
ACK for rtsg's SYN. Rtsg then ACKs csam's SYN. The `.' means the ACK
flag was set. The packet contained no data so there is no data
sequence number or length. Note that the ACK sequence number is a
small integer (1). The first time tcpdump sees a TCP `conversation',
it prints the sequence number from the packet. On subsequent packets
of the conversation, the difference between the current packet's
sequence number and this initial sequence number is printed. This
means that sequence numbers after the first can be interpreted as
relative byte positions in the conversation's data stream (with the
first data byte each direction being `1'). `-S' will override this
feature, causing the original sequence numbers to be output.
On the 6th line, rtsg sends csam 19 bytes of data (bytes 2 through 20
in the rtsg -> csam side of the conversation). The PSH flag is set in
the packet. On the 7th line, csam says it's received data sent by rtsg
up to but not including byte 21. Most of this data is apparently
reports ``[|tcp]'' to indicate the remainder could not be interpreted.
If the header contains a bogus option (one with a length that's either
too small or beyond the end of the header), tcpdump reports it as
``[bad opt]'' and does not interpret any further options (since it's
impossible to tell where they start). If the header length indicates
options are present but the IP datagram length is not long enough for
the options to actually be there, tcpdump reports it as ``[bad hdr
length]''.
Capturing TCP packets with particular flag combinations (SYN-ACK,
URG-ACK, etc.)
There are 8 bits in the control bits section of the TCP header:
CWR | ECE | URG | ACK | PSH | RST | SYN | FIN
Let's assume that we want to watch packets used in establishing a TCP
connection. Recall that TCP uses a 3-way handshake protocol when it
initializes a new connection; the connection sequence with regard to
the TCP control bits is
1) Caller sends SYN
2) Recipient responds with SYN, ACK
3) Caller sends ACK
Now we're interested in capturing packets that have only the SYN bit
set (Step 1). Note that we don't want packets from step 2 (SYN-ACK),
just a plain initial SYN. What we need is a correct filter expression
for tcpdump.
Recall the structure of a TCP header without options:
0 15 31
-----------------------------------------------------------------
| source port | destination port |
-----------------------------------------------------------------
| sequence number |
-----------------------------------------------------------------
| acknowledgment number |
-----------------------------------------------------------------
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
-----------------------------------------------------------------
| TCP checksum | urgent pointer |
-----------------------------------------------------------------
A TCP header usually holds 20 octets of data, unless options are
present. The first line of the graph contains octets 0 - 3, the second
line shows octets 4 - 7 etc.
Starting to count with 0, the relevant TCP control bits are contained
in octet 13:
0 7| 15| 23| 31
----------------|---------------|---------------|----------------
| HL | rsvd |C|E|U|A|P|R|S|F| window size |
----------------|---------------|---------------|----------------
| | 13th octet | | |
Let's have a closer look at octet no. 13:
These are the TCP control bits we are interested in. We have numbered
the bits in this octet from 0 to 7, right to left, so the PSH bit is
bit number 3, while the URG bit is number 5.
Recall that we want to capture packets with only SYN set. Let's see
what happens to octet 13 if a TCP datagram arrives with the SYN bit set
in its header:
|C|E|U|A|P|R|S|F|
|---------------|
|0 0 0 0 0 0 1 0|
|---------------|
|7 6 5 4 3 2 1 0|
Looking at the control bits section we see that only bit number 1 (SYN)
is set.
Assuming that octet number 13 is an 8-bit unsigned integer in network
byte order, the binary value of this octet is
00000010
and its decimal representation is
7 6 5 4 3 2 1 0
0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 0*2 + 1*2 + 0*2 = 2
We're almost done, because now we know that if only SYN is set, the
value of the 13th octet in the TCP header, when interpreted as a 8-bit
unsigned integer in network byte order, must be exactly 2.
This relationship can be expressed as
tcp[13] == 2
We can use this expression as the filter for tcpdump in order to watch
packets which have only SYN set:
tcpdump -i xl0 tcp[13] == 2
The expression says "let the 13th octet of a TCP datagram have the
decimal value 2", which is exactly what we want.
Now, let's assume that we need to capture SYN packets, but we don't
care if ACK or any other TCP control bit is set at the same time.
Let's see what happens to octet 13 when a TCP datagram with SYN-ACK set
arrives:
|C|E|U|A|P|R|S|F|
|---------------|
|0 0 0 1 0 0 1 0|
|---------------|
|7 6 5 4 3 2 1 0|
Now bits 1 and 4 are set in the 13th octet. The binary value of octet
13 is
00010010
which translates to decimal
In order to achieve our goal, we need to logically AND the binary value
of octet 13 with some other value to preserve the SYN bit. We know
that we want SYN to be set in any case, so we'll logically AND the
value in the 13th octet with the binary value of a SYN:
00010010 SYN-ACK 00000010 SYN
AND 00000010 (we want SYN) AND 00000010 (we want SYN)
-------- --------
= 00000010 = 00000010
We see that this AND operation delivers the same result regardless
whether ACK or another TCP control bit is set. The decimal
representation of the AND value as well as the result of this operation
is 2 (binary 00000010), so we know that for packets with SYN set the
following relation must hold true:
( ( value of octet 13 ) AND ( 2 ) ) == ( 2 )
This points us to the tcpdump filter expression
tcpdump -i xl0 'tcp[13] & 2 == 2'
Some offsets and field values may be expressed as names rather than as
numeric values. For example tcp[13] may be replaced with tcp[tcpflags].
The following TCP flag field values are also available: tcp-fin, tcp-
syn, tcp-rst, tcp-push, tcp-ack, tcp-urg, tcp-ece and tcp-cwr.
This can be demonstrated as:
tcpdump -i xl0 'tcp[tcpflags] & tcp-push != 0'
Note that you should use single quotes or a backslash in the expression
to hide the AND ('&') special character from the shell.
UDP Packets
UDP format is illustrated by this rwho packet:
actinide.who > broadcast.who: udp 84
This says that port who on host actinide sent a UDP datagram to port
who on host broadcast, the Internet broadcast address. The packet
contained 84 bytes of user data.
Some UDP services are recognized (from the source or destination port
number) and the higher level protocol information printed. In
particular, Domain Name service requests (RFC 1034/1035) and Sun RPC
calls (RFC 1050) to NFS.
TCP or UDP Name Server Requests
(N.B.:The following description assumes familiarity with the Domain
Service protocol described in RFC 1035. If you are not familiar with
the protocol, the following description will appear to be written in
Greek.)
Name server requests are formatted as
src > dst: id op? flags qtype qclass name (len)
h2opolo.1538 > helios.domain: 3+ A? ucbvax.berkeley.edu. (37)
Host h2opolo asked the domain server on helios for an address record
(qtype=A) associated with the name ucbvax.berkeley.edu. The query id
A few anomalies are checked and may result in extra fields enclosed in
square brackets: If a query contains an answer, authority records or
additional records section, ancount, nscount, or arcount are printed as
`[na]', `[nn]' or `[nau]' where n is the appropriate count. If any of
the response bits are set (AA, RA or rcode) or any of the `must be
zero' bits are set in bytes two and three, `[b2&3=x]' is printed, where
x is the hex value of header bytes two and three.
TCP or UDP Name Server Responses
Name server responses are formatted as
src > dst: id op rcode flags a/n/au type class data (len)
helios.domain > h2opolo.1538: 3 3/3/7 A 128.32.137.3 (273)
helios.domain > h2opolo.1537: 2 NXDomain* 0/1/0 (97)
In the first example, helios responds to query id 3 from h2opolo with 3
answer records, 3 name server records and 7 additional records. The
first answer record is type A (address) and its data is internet
address 128.32.137.3. The total size of the response was 273 bytes,
excluding TCP or UDP and IP headers. The op (Query) and response code
(NoError) were omitted, as was the class (C_IN) of the A record.
In the second example, helios responds to query 2 with a response code
of non-existent domain (NXDomain) with no answers, one name server and
no authority records. The `*' indicates that the authoritative answer
bit was set. Since there were no answers, no type, class or data were
printed.
Other flag characters that might appear are `-' (recursion available,
RA, not set) and `|' (truncated message, TC, set). If the `question'
section doesn't contain exactly one entry, `[nq]' is printed.
SMB/CIFS decoding
tcpdump now includes fairly extensive SMB/CIFS/NBT decoding for data on
UDP/137, UDP/138 and TCP/139. Some primitive decoding of IPX and
NetBEUI SMB data is also done.
By default a fairly minimal decode is done, with a much more detailed
decode done if -v is used. Be warned that with -v a single SMB packet
may take up a page or more, so only use -v if you really want all the
gory details.
For information on SMB packet formats and what all the fields mean see
https://download.samba.org/pub/samba/specs/ and other online resources.
The SMB patches were written by Andrew Tridgell (tridge@samba.org).
NFS Requests and Replies
Sun NFS (Network File System) requests and replies are printed as:
src.sport > dst.nfs: NFS request xid xid len op args
src.nfs > dst.dport: NFS reply xid xid reply stat len op results
sushi.1023 > wrl.nfs: NFS request xid 26377
112 readlink fh 21,24/10.73165
wrl.nfs > sushi.1023: NFS reply xid 26377
reply ok 40 readlink "../var"
sushi.1022 > wrl.nfs: NFS request xid 8219
144 lookup fh 9,74/4096.6878 "xcolors"
can be interpreted as a major,minor device number pair, followed by the
inode number and generation number.) In the second line, wrl replies
`ok' with the same transaction id and the contents of the link.
In the third line, sushi asks (using a new transaction id) wrl to
lookup the name `xcolors' in directory file 9,74/4096.6878. In the
fourth line, wrl sends a reply with the respective transaction id.
Note that the data printed depends on the operation type. The format
is intended to be self explanatory if read in conjunction with an NFS
protocol spec. Also note that older versions of tcpdump printed NFS
packets in a slightly different format: the transaction id (xid) would
be printed instead of the non-NFS port number of the packet.
If the -v (verbose) flag is given, additional information is printed.
For example:
sushi.1023 > wrl.nfs: NFS request xid 79658
148 read fh 21,11/12.195 8192 bytes @ 24576
wrl.nfs > sushi.1023: NFS reply xid 79658
reply ok 1472 read REG 100664 ids 417/0 sz 29388
(-v also prints the IP header TTL, ID, length, and fragmentation
fields, which have been omitted from this example.) In the first line,
sushi asks wrl to read 8192 bytes from file 21,11/12.195, at byte
offset 24576. Wrl replies `ok'; the packet shown on the second line is
the first fragment of the reply, and hence is only 1472 bytes long (the
other bytes will follow in subsequent fragments, but these fragments do
not have NFS or even UDP headers and so might not be printed, depending
on the filter expression used). Because the -v flag is given, some of
the file attributes (which are returned in addition to the file data)
are printed: the file type (``REG'', for regular file), the file mode
(in octal), the UID and GID, and the file size.
If the -v flag is given more than once, even more details are printed.
NFS reply packets do not explicitly identify the RPC operation.
Instead, tcpdump keeps track of ``recent'' requests, and matches them
to the replies using the transaction ID. If a reply does not closely
follow the corresponding request, it might not be parsable.
AFS Requests and Replies
Transarc AFS (Andrew File System) requests and replies are printed as:
src.sport > dst.dport: rx packet-type
src.sport > dst.dport: rx packet-type service call call-name args
src.sport > dst.dport: rx packet-type service reply call-name args
elvis.7001 > pike.afsfs:
rx data fs call rename old fid 536876964/1/1 ".newsrc.new"
new fid 536876964/1/1 ".newsrc"
pike.afsfs > elvis.7001: rx data fs reply rename
In the first line, host elvis sends a RX packet to pike. This was a RX
data packet to the fs (fileserver) service, and is the start of an RPC
call. The RPC call was a rename, with the old directory file id of
536876964/1/1 and an old filename of `.newsrc.new', and a new directory
file id of 536876964/1/1 and a new filename of `.newsrc'. The host
The format is intended to be self-describing, but it will probably not
be useful to people who are not familiar with the workings of AFS and
RX.
If the -v (verbose) flag is given twice, acknowledgement packets and
additional header information is printed, such as the RX call ID, call
number, sequence number, serial number, and the RX packet flags.
If the -v flag is given twice, additional information is printed, such
as the RX call ID, serial number, and the RX packet flags. The MTU
negotiation information is also printed from RX ack packets.
If the -v flag is given three times, the security index and service id
are printed.
Error codes are printed for abort packets, with the exception of Ubik
beacon packets (because abort packets are used to signify a yes vote
for the Ubik protocol).
AFS reply packets do not explicitly identify the RPC operation.
Instead, tcpdump keeps track of ``recent'' requests, and matches them
to the replies using the call number and service ID. If a reply does
not closely follow the corresponding request, it might not be parsable.
KIP AppleTalk (DDP in UDP)
AppleTalk DDP packets encapsulated in UDP datagrams are de-encapsulated
and dumped as DDP packets (i.e., all the UDP header information is
discarded). The file /etc/atalk.names is used to translate AppleTalk
net and node numbers to names. Lines in this file have the form
number name
1.254 ether
16.1 icsd-net
1.254.110 ace
The first two lines give the names of AppleTalk networks. The third
line gives the name of a particular host (a host is distinguished from
a net by the 3rd octet in the number - a net number must have two
octets and a host number must have three octets.) The number and name
should be separated by whitespace (blanks or tabs). The
/etc/atalk.names file may contain blank lines or comment lines (lines
starting with a `#').
AppleTalk addresses are printed in the form
net.host.port
144.1.209.2 > icsd-net.112.220
office.2 > icsd-net.112.220
jssmag.149.235 > icsd-net.2
(If the /etc/atalk.names doesn't exist or doesn't contain an entry for
some AppleTalk host/net number, addresses are printed in numeric form.)
In the first example, NBP (DDP port 2) on net 144.1 node 209 is sending
to whatever is listening on port 220 of net icsd node 112. The second
line is the same except the full name of the source node is known
(`office'). The third line is a send from port 235 on net jssmag node
149 to broadcast on the icsd-net NBP port (note that the broadcast
address (255) is indicated by a net name with no host number - for this
reason it's a good idea to keep node names and net names distinct in
NBP packets are formatted like the following examples:
icsd-net.112.220 > jssmag.2: nbp-lkup 190: "=:LaserWriter@*"
jssmag.209.2 > icsd-net.112.220: nbp-reply 190: "RM1140:LaserWriter@*" 250
techpit.2 > icsd-net.112.220: nbp-reply 190: "techpit:LaserWriter@*" 186
The first line is a name lookup request for laserwriters sent by net
icsd host 112 and broadcast on net jssmag. The nbp id for the lookup
is 190. The second line shows a reply for this request (note that it
has the same id) from host jssmag.209 saying that it has a laserwriter
resource named "RM1140" registered on port 250. The third line is
another reply to the same request saying host techpit has laserwriter
"techpit" registered on port 186.
ATP packet formatting is demonstrated by the following example:
jssmag.209.165 > helios.132: atp-req 12266<0-7> 0xae030001
helios.132 > jssmag.209.165: atp-resp 12266:0 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:1 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:2 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:4 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:6 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp*12266:7 (512) 0xae040000
jssmag.209.165 > helios.132: atp-req 12266<3,5> 0xae030001
helios.132 > jssmag.209.165: atp-resp 12266:3 (512) 0xae040000
helios.132 > jssmag.209.165: atp-resp 12266:5 (512) 0xae040000
jssmag.209.165 > helios.132: atp-rel 12266<0-7> 0xae030001
jssmag.209.133 > helios.132: atp-req* 12267<0-7> 0xae030002
Jssmag.209 initiates transaction id 12266 with host helios by
requesting up to 8 packets (the `<0-7>'). The hex number at the end of
the line is the value of the `userdata' field in the request.
Helios responds with 8 512-byte packets. The `:digit' following the
transaction id gives the packet sequence number in the transaction and
the number in parens is the amount of data in the packet, excluding the
ATP header. The `*' on packet 7 indicates that the EOM bit was set.
Jssmag.209 then requests that packets 3 & 5 be retransmitted. Helios
resends them then jssmag.209 releases the transaction. Finally,
jssmag.209 initiates the next request. The `*' on the request
indicates that XO (`exactly once') was not set.
BACKWARD COMPATIBILITY
The TCP flag names tcp-ece and tcp-cwr became available when linking
with libpcap 1.9.0 or later.
SEE ALSO
stty(1), pcap(3PCAP), bpf(4), nit(4P), pcap-savefile(5),
pcap-filter(7), pcap-tstamp(7)
https://www.iana.org/assignments/media-types/application/vnd.tcpdump.pcap
AUTHORS
The original authors are:
Van Jacobson, Craig Leres and Steven McCanne, all of the Lawrence
Berkeley National Laboratory, University of California, Berkeley, CA.
ftp://ftp.ee.lbl.gov/old/tcpdump.tar.Z
IPv6/IPsec support is added by WIDE/KAME project. This program uses
OpenSSL/LibreSSL, under specific configurations.
BUGS
To report a security issue please send an e-mail to
security@tcpdump.org.
To report bugs and other problems, contribute patches, request a
feature, provide generic feedback etc. please see the file
CONTRIBUTING.md in the tcpdump source tree root.
NIT doesn't let you watch your own outbound traffic, BPF will. We
recommend that you use the latter.
On Linux systems with 2.0[.x] kernels:
packets on the loopback device will be seen twice;
packet filtering cannot be done in the kernel, so that all
packets must be copied from the kernel in order to be filtered
in user mode;
all of a packet, not just the part that's within the snapshot
length, will be copied from the kernel (the 2.0[.x] packet
capture mechanism, if asked to copy only part of a packet to
userspace, will not report the true length of the packet; this
would cause most IP packets to get an error from tcpdump);
capturing on some PPP devices won't work correctly.
We recommend that you upgrade to a 2.2 or later kernel.
Some attempt should be made to reassemble IP fragments or, at least to
compute the right length for the higher level protocol.
Name server inverse queries are not dumped correctly: the (empty)
question section is printed rather than real query in the answer
section. Some believe that inverse queries are themselves a bug and
prefer to fix the program generating them rather than tcpdump.
A packet trace that crosses a daylight savings time change will give
skewed time stamps (the time change is ignored).
Filter expressions on fields other than those in Token Ring headers
will not correctly handle source-routed Token Ring packets.
Filter expressions on fields other than those in 802.11 headers will
not correctly handle 802.11 data packets with both To DS and From DS
set.
ip6 proto should chase header chain, but at this moment it does not.
ip6 protochain is supplied for this behavior.
Arithmetic expression against transport layer headers, like tcp[0],
does not work against IPv6 packets. It only looks at IPv4 packets.