FreeBSD manual
download PDF document: string_commit.3.pdf
SNMPMOD(3) FreeBSD Library Functions Manual SNMPMOD(3)
NAME
INSERT_OBJECT_OID_LINK_INDEX, INSERT_OBJECT_INT_LINK_INDEX,
FIND_OBJECT_OID_LINK_INDEX, NEXT_OBJECT_OID_LINK_INDEX,
FIND_OBJECT_INT_LINK_INDEX, NEXT_OBJECT_INT_LINK_INDEX,
INSERT_OBJECT_OID_LINK, INSERT_OBJECT_INT_LINK, FIND_OBJECT_OID_LINK,
NEXT_OBJECT_OID_LINK, FIND_OBJECT_INT_LINK, NEXT_OBJECT_INT_LINK,
INSERT_OBJECT_OID, INSERT_OBJECT_INT, FIND_OBJECT_OID, FIND_OBJECT_INT,
NEXT_OBJECT_OID, NEXT_OBJECT_INT, this_tick, start_tick, get_ticks,
systemg, comm_define, community, oid_zeroDotZero,
oid_usmUnknownEngineIDs, oid_usmNotInTimeWindows, reqid_allocate,
reqid_next, reqid_base, reqid_istype, reqid_type, timer_start,
timer_start_repeat, timer_stop, fd_select, fd_deselect, fd_suspend,
fd_resume, or_register, or_unregister, buf_alloc, buf_size,
snmp_input_start, snmp_input_finish, snmp_output, snmp_send_port,
snmp_send_trap, snmp_pdu_auth_access string_save, string_commit,
string_rollback, string_get, string_get_max, string_free, ip_save,
ip_rollback, ip_commit, ip_get, oid_save, oid_rollback, oid_commit,
oid_get, index_decode, index_compare, index_compare_off, index_append,
index_append_off, snmpd_usmstats, bsnmpd_get_usm_stats,
bsnmpd_reset_usm_stats, usm_first_user, usm_next_user, usm_find_user,
usm_new_user, usm_delete_user, usm_flush_users, usm_user,
snmpd_target_stat, bsnmpd_get_target_stats, target_first_address,
target_next_address, target_new_address, target_activate_address,
target_delete_address, target_first_param, target_next_param,
target_new_param, target_delete_param, target_first_notify,
target_next_notify, target_new_notify, target_delete_notify,
target_flush_all, target_address, target_param, target_notify - SNMP
daemon loadable module interface
LIBRARY
Begemot SNMP library (libbsnmp, -lbsnmp)
SYNOPSIS
#include <bsnmp/snmpmod.h>
INSERT_OBJECT_OID_LINK_INDEX(PTR, LIST, LINK, INDEX);
INSERT_OBJECT_INT_LINK_INDEX(PTR, LIST, LINK, INDEX);
FIND_OBJECT_OID_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);
FIND_OBJECT_INT_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);
NEXT_OBJECT_OID_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);
NEXT_OBJECT_INT_LINK_INDEX(LIST, OID, SUB, LINK, INDEX);
INSERT_OBJECT_OID_LINK(PTR, LIST, LINK);
INSERT_OBJECT_INT_LINK(PTR, LIST, LINK);
FIND_OBJECT_OID_LINK(LIST, OID, SUB, LINK);
FIND_OBJECT_INT_LINK(LIST, OID, SUB, LINK);
NEXT_OBJECT_OID_LINK(LIST, OID, SUB, LINK);
FIND_OBJECT_INT(LIST, OID, SUB);
NEXT_OBJECT_OID(LIST, OID, SUB);
NEXT_OBJECT_INT(LIST, OID, SUB);
extern uint64_t this_tick;
extern uint64_t start_tick;
uint64_t
get_ticks(void);
extern struct systemg systemg;
u_int
comm_define(u_int priv, const char *descr, struct lmodule *mod,
const char *str);
const char *
comm_string(u_int comm);
extern u_int community;
extern const struct asn_oid oid_zeroDotZero;
u_int
reqid_allocate(int size, struct lmodule *mod);
int32_t
reqid_next(u_int type);
int32_t
reqid_base(u_int type);
int
reqid_istype(int32_t reqid, u_int type);
u_int
reqid_type(int32_t reqid);
void *
timer_start(u_int ticks, void (*func)(void *), void *uarg,
struct lmodule *mod);
void *
timer_start_repeat(u_int ticks, u_int repeat_ticks, void (*func)(void *),
void *uarg, struct lmodule *mod);
void
timer_stop(void *timer_id);
void *
fd_select(int fd, void (*func)(int, void *), void *uarg,
struct lmodule *mod);
void
fd_deselect(void *fd_id);
void
struct lmodule *mod);
void
or_unregister(u_int or_id);
void *
buf_alloc(int tx);
size_t
buf_size(int tx);
enum snmpd_input_err
snmp_input_start(const u_char *buf, size_t len, const char *source,
struct snmp_pdu *pdu, int32_t *ip, size_t *pdulen);
enum snmpd_input_err
snmp_input_finish(struct snmp_pdu *pdu, const u_char *rcvbuf,
size_t rcvlen, u_char *sndbuf, size_t *sndlen, const char *source,
enum snmpd_input_err ierr, int32_t ip, void *data);
void
snmp_output(struct snmp_pdu *pdu, u_char *sndbuf, size_t *sndlen,
const char *dest);
void
snmp_send_port(void *trans, const struct asn_oid *port,
struct snmp_pdu *pdu, const struct sockaddr *addr,
socklen_t addrlen);
void
snmp_send_trap(const struct asn_oid *oid, ...);
enum snmp_code
snmp_pdu_auth_access(struct snmp_pdu *pdu, int32_t *ip);
int
string_save(struct snmp_value *val, struct snmp_context *ctx,
ssize_t req_size, u_char **strp);
void
string_commit(struct snmp_context *ctx);
void
string_rollback(struct snmp_context *ctx, u_char **strp);
int
string_get(struct snmp_value *val, const u_char *str, ssize_t len);
int
string_get_max(struct snmp_value *val, const u_char *str, ssize_t len,
size_t maxlen);
void
string_free(struct snmp_context *ctx);
int
ip_save(struct snmp_value *val, struct snmp_context *ctx, u_char *ipa);
void
int
oid_save(struct snmp_value *val, struct snmp_context *ctx,
struct asn_oid *oid);
void
oid_rollback(struct snmp_context *ctx, struct asn_oid *oid);
void
oid_commit(struct snmp_context *ctx);
int
oid_get(struct snmp_value *val, const struct asn_oid *oid);
int
index_decode(const struct asn_oid *oid, u_int sub, u_int code, ...);
int
index_compare(const struct asn_oid *oid1, u_int sub,
const struct asn_oid *oid2);
int
index_compare_off(const struct asn_oid *oid1, u_int sub,
const struct asn_oid *oid2, u_int off);
void
index_append(struct asn_oid *dst, u_int sub, const struct asn_oid *src);
void
index_append_off(struct asn_oid *dst, u_int sub,
const struct asn_oid *src, u_int off);
extern struct snmpd_usmstat snmpd_usmstats;
struct snmpd_usmstat *
bsnmpd_get_usm_stats(void);
void
bsnmpd_reset_usm_stats(void);
struct usm_user *
usm_first_user(void);
struct usm_user *
usm_next_user(struct usm_user *uuser);
struct usm_user *
usm_find_user(uint8_t *engine, uint32_t elen, char *uname);
struct usm_user *
usm_new_user(uint8_t *engine, uint32_t elen, char *uname);
void
usm_delete_user(struct usm_user *);
void
usm_flush_users(void);
extern struct usm_user *usm_user;
struct target_address *
target_next_address(struct target_address *);
struct target_address *
target_new_address(char *);
int
target_activate_address(struct target_address *);
int
target_delete_address(struct target_address *);
struct target_param *
target_first_param(void);
struct target_param *
target_next_param(struct target_param *);
struct target_param *
target_new_param(char *);
int
target_delete_param(struct target_param *);
struct target_notify *
target_first_notify(void);
struct target_notify *
target_next_notify(struct target_notify *);
struct target_notify *
target_new_notify(char *);
int
target_delete_notify(struct target_notify *);
void
target_flush_all(void);
extern const struct asn_oid oid_usmUnknownEngineIDs;
extern const struct asn_oid oid_usmNotInTimeWindows;
DESCRIPTION
The bsnmpd(1) SNMP daemon implements a minimal MIB which consists of the
system group, part of the SNMP MIB, a private configuration MIB, a trap
destination table, a UDP port table, a community table, a module table, a
statistics group and a debugging group. All other MIBs are support
through loadable modules. This allows bsnmpd(1) to use for task, that
are not the classical SNMP task.
MODULE LOADING AND UNLOADING
Modules are loaded by writing to the module table. This table is indexed
by a string, that identifies the module to the daemon. This identifier
is used to select the correct configuration section from the
configuration files and to identify resources allocated to this module.
A row in the module table is created by writing a string of non-zero
length to the begemotSnmpdModulePath column. This string must be the
complete path to the file containing the module. A module can be
unloaded by writing a zero length string to the path column of an
snmp_module:
typedef enum snmpd_proxy_err (*proxy_err_f)(struct snmp_pdu *, void *,
const struct asn_oid *, const struct sockaddr *, socklen_t,
enum snmpd_input_err, int32_t);
struct snmp_module {
const char *comment;
int (*init)(struct lmodule *, int argc, char *argv[]);
int (*fini)(void);
void (*idle)(void);
void (*dump)(void);
void (*config)(void);
void (*start)(void);
proxy_err_f proxy;
const struct snmp_node *tree;
u_int tree_size;
void (*loading)(const struct lmodule *, int);
};
This structure must be statically initialized and its fields have the
following functions:
comment This is a string that will be visible in the module table.
It should give some hint about the function of this module.
init This function is called upon loading the module. The
module pointer should be stored by the module because it is
needed in other calls and the argument vector will contain
the arguments to this module from the daemons command line.
This function should return 0 if everything is ok or an
UNIX error code (see errno(3)). Once the function returns
0, the fini function is called when the module is unloaded.
fini The module is unloaded. This gives the module a chance to
free resources that are not automatically freed. Be sure
to free all memory, because daemons tend to run very long.
This function pointer may be NULL if it is not needed.
idle If this function pointer is not NULL, the function pointed
to by it is called whenever the daemon is going to wait for
an event. Try to avoid using this feature.
dump Whenever the daemon receives a SIGUSR1 it dumps it internal
state via syslog(3). If the dump field is not NULL it is
called by the daemon to dump the state of the module.
config Whenever the daemon receives a SIGHUP signal it re-reads
its configuration file. If the config field is not NULL it
is called after reading the configuration file to give the
module a chance to adapt to the new configuration.
start If not NULL this function is called after successful
loading and initializing the module to start its actual
operation.
proxy If the daemon receives a PDU and that PDU has a community
string whose community was registered by this module and
loading If this pointer is not NULL it is called whenever another
module was loaded or unloaded. It gets a pointer to that
module and a flag that is 0 for unloading and 1 for
loading.
When everything is ok, the daemon merges the module's MIB tree into its
current global tree, calls the modules init() function. If this function
returns an error, the modules MIB tree is removed from the global one and
the module is unloaded. If initialization is successful, the modules
start() function is called. After it returns the loaded() functions of
all modules (including the loaded one) are called.
When the module is unloaded, its MIB tree is removed from the global one,
the communities, request id ranges, running timers and selected file
descriptors are released, the fini() function is called, the module file
is unloaded and the loaded() functions of all other modules are called.
IMPLEMENTING TABLES
There are a number of macros designed to help implementing SNMP tables.
A problem while implementing a table is the support for the GETNEXT
operator. The GETNEXT operation has to find out whether, given an
arbitrary OID, the lessest table row, that has an OID higher than the
given OID. The easiest way to do this is to keep the table as an ordered
list of structures each one of which contains an OID that is the index of
the table row. This allows easy removal, insertion and search.
The helper macros assume, that the table is organized as a TAILQ (see
queue(3) and each structure contains a struct asn_oid that is used as
index. For simple tables with only a integer or unsigned index, an
alternate form of the macros is available, that presume the existence of
an integer or unsigned field as index field.
The macros have name of the form
{INSERT,FIND,NEXT}_OBJECT_{OID,INT}[_LINK[_INDEX]]
The INSERT_*() macros are used in the SET operation to insert a new table
row into the table. The FIND_*() macros are used in the GET operation to
find a specific row in the table. The NEXT_*() macros are used in the
GETNEXT operation to find the next row in the table. The last two macros
return a pointer to the row structure if a row is found, NULL otherwise.
The macros *_OBJECT_OID_*() assume the existence of a struct asn_oid that
is used as index, the macros *_OBJECT_INT_*() assume the existence of an
unsigned integer field that is used as index.
The macros *_INDEX() allow the explicit naming of the index field in the
parameter INDEX, whereas the other macros assume that this field is named
index. The macros *_LINK_*() allow the explicit naming of the link field
of the tail queues, the others assume that the link field is named link.
Explicitly naming the link field may be necessary if the same structures
are held in two or more different tables.
The arguments to the macros are as follows:
PTR A pointer to the new structure to be inserted into the table.
LIST A pointer to the tail queue head.
SUB This is the index of the start of the table index in the OID
pointed to by OID. This is usually the same as the sub argument
to the node operation callback.
DAEMON TIMESTAMPS
The variable this_tick contains the tick (there are 100 SNMP ticks in a
second) when the current PDU processing was started. The variable
start_tick contains the tick when the daemon was started. The function
get_ticks() returns the current tick. The number of ticks since the
daemon was started is
get_ticks() - start_tick
THE SYSTEM GROUP
The scalar fields of the system group are held in the global variable
systemg:
struct systemg {
u_char *descr;
struct asn_oid object_id;
u_char *contact;
u_char *name;
u_char *location;
uint32_t services;
uint32_t or_last_change;
};
COMMUNITIES
The SNMP daemon implements a community table. On receipt of a request
message the community string in that message is compared to each of the
community strings in that table, if a match is found, the global variable
community is set to the community identifier for that community.
Community identifiers are unsigned integers. For the three standard
communities there are three constants defined:
#define COMM_INITIALIZE 0
#define COMM_READ 1
#define COMM_WRITE 2
community is set to COMM_INITIALIZE while the assignments in the
configuration file are processed. To COMM_READ or COMM_WRITE when the
community strings for the read-write or read-only community are found in
the incoming PDU.
Modules can define additional communities. This may be necessary to
provide transport proxying (a PDU received on one communication link is
proxied to another link) or to implement non-UDP access points to SNMP.
A new community is defined with the function comm_define(). It takes the
following parameters:
priv This is an integer identifying the community to the module.
Each module has its own namespace with regard to this
parameter. The community table is indexed with the module name
and this identifier.
descr This is a string providing a human readable description of the
community. It is visible in the community table.
mod This is the module defining the community.
The function comm_string() returns the current community string for the
given community.
All communities defined by a module are automatically released when the
module is unloaded.
THE USER-BASED SECURITY GROUP
The scalar statistics of the USM group are held in the global variable
snmpd_usmstats:
struct snmpd_usmstat {
uint32_t unsupported_seclevels;
uint32_t not_in_time_windows;
uint32_t unknown_users;
uint32_t unknown_engine_ids;
uint32_t wrong_digests;
uint32_t decrypt_errors;
};
bsnmpd_get_usm_stats() returns a pointer to the global structure
containing the statistics. bsnmpd_reset_usm_stats() clears the
statistics of the USM group.
A global list of configured USM users is maintained by the daemon.
struct usm_user {
struct snmp_user suser;
uint8_t user_engine_id[SNMP_ENGINE_ID_SIZ];
uint32_t user_engine_len;
char user_public[SNMP_ADM_STR32_SIZ];
uint32_t user_public_len;
int32_t status;
int32_t type;
SLIST_ENTRY(usm_user) up;
};
This structure represents an USM user. The daemon only responds to SNMPv3
PDUs with user credentials matching an USM user entry in its global list.
If a SNMPv3 PDU is received, whose security model is USM, the global
usm_user is set to point at the user entry that matches the credentials
contained in the PDU. However, the daemon does not create or remove USM
users, it gives an interface to external loadable module(s) to manage the
list. usm_new_user() adds an user entry in the list, and
usm_delete_user() deletes an existing entry from the list.
usm_flush_users() is used to remove all configured USM users.
usm_first_user() will return the first user in the list, or NULL if the
list is empty. usm_next_user() will return the next user of a given
entry if one exists, or NULL. The list is sorted according to the USM
user name and Engine ID. usm_find_user() returns the USM user entry
matching the given engine and uname or NULL if an user with the specified
name and engine id is not present in the list.
THE MANAGEMENT TARGET GROUP
The Management Target group holds target address information used when
sending SNMPv3 notifications.
The scalar statistics of the Management Target group are held in the
global variable snmpd_target_stats:
struct snmpd_target_stats {
uint32_t unavail_contexts;
struct target_address {
char name[SNMP_ADM_STR32_SIZ];
uint8_t address[SNMP_UDP_ADDR_SIZ];
int32_t timeout;
int32_t retry;
char taglist[SNMP_TAG_SIZ];
char paramname[SNMP_ADM_STR32_SIZ];
int32_t type;
int32_t socket;
int32_t status;
SLIST_ENTRY(target_address) ta;
};
This structure represents a SNMPv3 Management Target address. Each time a
SNMP TRAP is send the daemon will send the Trap to all active Management
Target addresses in its global list.
struct target_param {
char name[SNMP_ADM_STR32_SIZ];
int32_t mpmodel;
int32_t sec_model;
char secname[SNMP_ADM_STR32_SIZ];
enum snmp_usm_level sec_level;
int32_t type;
int32_t status;
SLIST_ENTRY(target_param) tp;
};
This structure represents the information used to generate SNMP messages
to the associated SNMPv3 Management Target addresses.
struct target_notify {
char name[SNMP_ADM_STR32_SIZ];
char taglist[SNMP_TAG_SIZ];
int32_t notify_type;
int32_t type;
int32_t status;
SLIST_ENTRY(target_notify) tn;
};
This structure represents Notification Tag entries - SNMP notifications
are sent to the Target address for each entry in the Management Target
Address list that has a tag matching the specified tag in this structure.
The daemon does not create or remove entries in the Management Target
group lists, it gives an interface to external loadable module(s) to
manage the lists. target_new_address() adds a target address entry, and
target_delete_address() deletes an existing entry from the target address
list. target_activate_address() creates a socket associated with the
target address entry so that SNMP notifications may actually be send to
that target address. target_first_address() will return a pointer to the
first target address entry in the list, while target_next_address() will
return a pointer to the next target address of a given entry if one
exists. target_new_param() adds a target parameters' entry, and
target_delete_param() deletes an existing entry from the target
parameters list. target_first_param() will return a pointer to the first
target parameters' entry in the list, while target_next_param() will
return a pointer to the next target parameters of a given entry if one
exists. target_new_notify() adds a notification target entry, and
target_delete_notify() deletes an existing entry from the notification
target list. target_first_notify() will return a pointer to the first
variables oid_usmUnknownEngineIDs oid_usmNotInTimeWindows contains the
OIDs 1.3.6.1.6.3.15.1.1.4.0 and 1.3.6.1.6.3.15.1.1.2.0 used in the
SNMPv3 USM Engine Discovery.
REQUEST ID RANGES
For modules that implement SNMP client functions besides SNMP agent
functions it may be necessary to identify SNMP requests by their
identifier to allow easier routing of responses to the correct sub-
system. Request id ranges provide a way to acquire globally non-
overlapping sub-ranges of the entire 31-bit id range.
A request id range is allocated with reqid_allocate(). The arguments
are: the size of the range and the module allocating the range. For
example, the call
id = reqid_allocate(1000, module);
allocates a range of 1000 request ids. The function returns the request
id range identifier or 0 if there is not enough identifier space. The
function reqid_base() returns the lowest request id in the given range.
Request id are allocated starting at the lowest one linear throughout the
range. If the client application may have a lot of outstanding request
the range must be large enough so that an id is not reused until it is
really expired. reqid_next() returns the sequentially next id in the
range.
The function reqid_istype() checks whether the request id reqid is within
the range identified by type. The function reqid_type() returns the
range identifier for the given reqid or 0 if the request id is in none of
the ranges.
TIMERS
The SNMP daemon supports an arbitrary number of timers with SNMP tick
granularity. The function timer_start() arranges for the callback func
to be called with the argument uarg after ticks SNMP ticks have expired.
mod is the module that starts the timer. These timers are one-shot, they
are not restarted. Repeatable timers are started with
timer_start_repeat() which takes an additional argument repeat_ticks.
The argument ticks gives the number of ticks until the first execution of
the callback, while repeat_ticks is the number of ticks between
invocations of the callback. Note, that currently the number of initial
ticks silently may be set identical to the number of ticks between
callback invocations. The function returns a timer identifier that can
be used to stop the timer via timer_stop(). If a module is unloaded all
timers started by the module that have not expired yet are stopped.
FILE DESCRIPTOR SUPPORT
A module may need to get input from socket file descriptors without
blocking the daemon (for example to implement alternative SNMP
transports).
The function fd_select() causes the callback function func to be called
with the file descriptor fd and the user argument uarg whenever the file
descriptor fd can be read or has a close condition. If the file
descriptor is not in non-blocking mode, it is set to non-blocking mode.
If the callback is not needed anymore, fd_deselect() may be called with
the value returned from fd_select(). All file descriptors selected by a
module are automatically deselected when the module is unloaded.
OBJECT RESOURCES
The system group contains an object resource table. A module may create
an entry in this table by calling or_register() with the oid to be
registered, a textual description in str and a pointer to the module mod.
The registration can be removed with or_unregister(). All registrations
of a module are automatically removed if the module is unloaded.
TRANSMIT AND RECEIVE BUFFERS
A buffer is allocated via buf_alloc(). The argument must be 1 for
transmit and 0 for receive buffers. The function may return NULL if
there is no memory available. The current buffersize can be obtained
with buf_size().
PROCESSING PDUS
For modules that need to do their own PDU processing (for example for
proxying) the following functions are available:
Function snmp_input_start() decodes the PDU, searches the community, and
sets the global this_tick. It returns one of the following error codes:
SNMPD_INPUT_OK Everything ok, continue with processing.
SNMPD_INPUT_FAILED The PDU could not be decoded, has a wrong
version or an unknown community string.
SNMPD_INPUT_VALBADLEN A SET PDU had a value field in a binding with a
wrong length field in an ASN.1 header.
SNMPD_INPUT_VALRANGE A SET PDU had a value field in a binding with a
value that is out of range for the given ASN.1
type.
SNMPD_INPUT_VALBADENC A SET PDU had a value field in a binding with
wrong ASN.1 encoding.
SNMPD_INPUT_TRUNC The buffer appears to contain a valid begin of
a PDU, but is too short. For streaming
transports this means that the caller must save
what he already has and trying to obtain more
input and reissue this input to the function.
For datagram transports this means that part of
the datagram was lost and the input should be
ignored.
The function snmp_input_finish() does the other half of processing: if
snmp_input_start() did not return OK, tries to construct an error
response. If the start was OK, it calls the correct function from
bsnmpagent(3) to execute the request and depending on the outcome
constructs a response or error response PDU or ignores the request PDU.
It returns either SNMPD_INPUT_OK or SNMPD_INPUT_FAILED. In the first
case a response PDU was constructed and should be sent.
The function snmp_output() takes a PDU and encodes it.
The function snmp_send_port() takes a PDU, encodes it and sends it
through the given port (identified by the transport and the index in the
port table) to the given address.
The function snmp_send_trap() sends a trap to all trap destinations. The
granted.
SIMPLE ACTION SUPPORT
For simple scalar variables that need no dependencies a number of support
functions is available to handle the set, commit, rollback and get.
The following functions are used for OCTET STRING scalars, either NUL
terminated or not:
string_save()
should be called for SNMP_OP_SET. value and ctx are the resp.
arguments to the node callback. valp is a pointer to the
pointer that holds the current value and req_size should be -1
if any size of the string is acceptable or a number larger or
equal zero if the string must have a specific size. The
function saves the old value in the scratch area (note, that
any initial value must have been allocated by malloc(3)),
allocates a new string, copies over the new value, NUL-
terminates it and sets the new current value.
string_commit()
simply frees the saved old value in the scratch area.
string_rollback()
frees the new value, and puts back the old one.
string_get()
is used for GET or GETNEXT. The function
string_get_max()
can be used instead of string_get() to ensure that the
returned string has a certain maximum length. If len is -1,
the length is computed via strlen(3) from the current string
value. If the current value is NULL, a OCTET STRING of zero
length is returned.
string_free()
must be called if either rollback or commit fails to free the
saved old value.
The following functions are used to process scalars of type IP-address:
ip_save() Saves the current value in the scratch area and sets the new
value from valp.
ip_commit()
Does nothing.
ip_rollback()
Restores the old IP address from the scratch area.
ip_get() Retrieves the IP current address.
The following functions handle OID-typed variables:
oid_save()
Saves the current value in the scratch area by allocating a
struct asn_oid with malloc(3) and sets the new value from oid.
oid_get() Retrieves the OID
TABLE INDEX HANDLING
The following functions help in handling table indexes:
index_decode()
Decodes the index part of the OID. The parameter oid must be
a pointer to the var field of the value argument of the node
callback. The sub argument must be the index of the start of
the index in the OID (this is the sub argument to the node
callback). code is the index expression (parameter idx to the
node callback). These parameters are followed by parameters
depending on the syntax of the index elements as follows:
INTEGER int32_t * expected as argument.
COUNTER64 uint64_t * expected as argument. Note, that
this syntax is illegal for indexes.
OCTET STRING A u_char ** and a size_t * expected as
arguments. A buffer is allocated to hold the
decoded string.
OID A struct asn_oid * is expected as argument.
IP ADDRESS A u_int8_t * expected as argument that points
to a buffer of at least four byte.
COUNTER, GAUGE, TIMETICKS
A u_int32_t expected.
NULL No argument expected.
index_compare()
compares the current variable with an OID. oid1 and sub come
from the node callback arguments value->var and sub resp.
oid2 is the OID to compare to. The function returns -1, 0, +1
when the variable is lesser, equal, higher to the given OID.
oid2 must contain only the index part of the table column.
index_compare_off()
is equivalent to index_compare() except that it takes an
additional parameter off that causes it to ignore the first
off components of both indexes.
index_append()
appends OID src beginning at position sub to dst.
index_append_off()
appends OID src beginning at position off to dst beginning at
position sub + off.
SEE ALSO
gensnmptree(1), bsnmpd(1), bsnmpagent(3), bsnmpclient(3), bsnmplib(3)
STANDARDS
This implementation conforms to the applicable IETF RFCs and ITU-T
recommendations.