
NAME
memfd_create, shm_create_largepage, shm_open, shm_rename, shm_unlink - shared memory object

operations

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/mman.h>
#include <fcntl.h>

int

memfd_create(const char *name, unsigned int flags);

int

shm_create_largepage(const char *path, int flags, int psind, int alloc_policy, mode_t mode);

int

shm_open(const char *path, int flags, mode_t mode);

int

shm_rename(const char *path_from, const char *path_to, int flags);

int

shm_unlink(const char *path);

DESCRIPTION
The shm_open() function opens (or optionally creates) a POSIX shared memory object named path. The

flags argument contains a subset of the flags used by open(2). An access mode of either O_RDONLY or

O_RDWR must be included in flags. The optional flags O_CREAT, O_EXCL, and O_TRUNC may

also be specified.

If O_CREAT is specified, then a new shared memory object named path will be created if it does not

exist. In this case, the shared memory object is created with mode mode subject to the process’ umask

value. If both the O_CREAT and O_EXCL flags are specified and a shared memory object named path

already exists, then shm_open() will fail with EEXIST.

Newly created objects start off with a size of zero. If an existing shared memory object is opened with

O_RDWR and the O_TRUNC flag is specified, then the shared memory object will be truncated to a

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



size of zero. The size of the object can be adjusted via ftruncate(2) and queried via fstat(2).

The new descriptor is set to close during execve(2) system calls; see close(2) and fcntl(2).

The constant SHM_ANON may be used for the path argument to shm_open(). In this case, an

anonymous, unnamed shared memory object is created. Since the object has no name, it cannot be

removed via a subsequent call to shm_unlink(), or moved with a call to shm_rename(). Instead, the

shared memory object will be garbage collected when the last reference to the shared memory object is

removed. The shared memory object may be shared with other processes by sharing the file descriptor

via fork(2) or sendmsg(2). Attempting to open an anonymous shared memory object with O_RDONLY

will fail with EINVAL. All other flags are ignored.

The shm_create_largepage() function behaves similarly to shm_open(), except that the O_CREAT flag

is implicitly specified, and the returned "largepage" object is always backed by aligned, physically

contiguous chunks of memory. This ensures that the object can be mapped using so-called

"superpages", which can improve application performance in some workloads by reducing the number

of translation lookaside buffer (TLB) entries required to access a mapping of the object, and by reducing

the number of page faults performed when accessing a mapping. This happens automatically for all

largepage objects.

An existing largepage object can be opened using the shm_open() function. Largepage shared memory

objects behave slightly differently from non-largepage objects:

+o Memory for a largepage object is allocated when the object is extended using the ftruncate(2)

system call, whereas memory for regular shared memory objects is allocated lazily and may be

paged out to a swap device when not in use.

+o The size of a mapping of a largepage object must be a multiple of the underlying large page

size. Most attributes of such a mapping can only be modified at the granularity of the large

page size. For example, when using munmap(2) to unmap a portion of a largepage object

mapping, or when using mprotect(2) to adjust protections of a mapping of a largepage object,

the starting address must be large page size-aligned, and the length of the operation must be a

multiple of the large page size. If not, the corresponding system call will fail and set errno to

EINVAL.

The psind argument to shm_create_largepage() specifies the size of large pages used to back the object.

This argument is an index into the page sizes array returned by getpagesizes(3). In particular, all large

pages backing a largepage object must be of the same size. For example, on a system with large page

sizes of 2MB and 1GB, a 2GB largepage object will consist of either 1024 2MB pages, or 2 1GB pages,

depending on the value specified for the psind argument. The alloc_policy parameter specifies what

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



happens when an attempt to use ftruncate(2) to allocate memory for the object fails. The following

values are accepted:

SHM_LARGEPAGE_ALLOC_DEFAULT

If the (non-blocking) memory allocation fails because there is insufficient free contiguous

memory, the kernel will attempt to defragment physical memory and try another

allocation. The subsequent allocation may or may not succeed. If this subsequent

allocation also fails, ftruncate(2) will fail and set errno to ENOMEM.

SHM_LARGEPAGE_ALLOC_NOWAIT

If the memory allocation fails, ftruncate(2) will fail and set errno to ENOMEM.

SHM_LARGEPAGE_ALLOC_HARD

The kernel will attempt defragmentation until the allocation succeeds, or an unblocked

signal is delivered to the thread. However, it is possible for physical memory to be

fragmented such that the allocation will never succeed.

The FIOSSHMLPGCNF and FIOGSHMLPGCNF ioctl(2) commands can be used with a largepage

shared memory object to get and set largepage object parameters. Both commands operate on the

following structure:

struct shm_largepage_conf {

int psind;

int alloc_policy;

};

The FIOGSHMLPGCNF command populates this structure with the current values of these parameters,

while the FIOSSHMLPGCNF command modifies the largepage object. Currently only the alloc_policy

parameter may be modified. Internally, shm_create_largepage() works by creating a regular shared

memory object using shm_open(), and then converting it into a largepage object using the

FIOSSHMLPGCNF ioctl command.

The shm_rename() system call atomically removes a shared memory object named path_from and

relinks it at path_to. If another object is already linked at path_to, that object will be unlinked, unless

one of the following flags are provided:

SHM_RENAME_EXCHANGE

Atomically exchange the shms at path_from and path_to.

SHM_RENAME_NOREPLACE

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



Return an error if an shm exists at path_to, rather than unlinking it.

The shm_unlink() system call removes a shared memory object named path.

The memfd_create() function creates an anonymous shared memory object, identical to that created by

shm_open() when SHM_ANON is specified. Newly created objects start off with a size of zero. The

size of the new object must be adjusted via ftruncate(2).

The name argument must not be NULL, but it may be an empty string. The length of the name

argument may not exceed NAME_MAX minus six characters for the prefix "memfd:", which will be

prepended. The name argument is intended solely for debugging purposes and will never be used by the

kernel to identify a memfd. Names are therefore not required to be unique.

The following flags may be specified to memfd_create():

MFD_CLOEXEC Set FD_CLOEXEC on the resulting file descriptor.

MFD_ALLOW_SEALING Allow adding seals to the resulting file descriptor using the

F_ADD_SEALS fcntl(2) command.

MFD_HUGETLB This flag is currently unsupported.

RETURN VALUES
If successful, memfd_create() and shm_open() both return a non-negative integer, and shm_rename()

and shm_unlink() return zero. All functions return -1 on failure, and set errno to indicate the error.

COMPATIBILITY
The shm_create_largepage() and shm_rename() functions are FreeBSD extensions, as is support for the

SHM_ANON value in shm_open().

The path, path_from, and path_to arguments do not necessarily represent a pathname (although they do

in most other implementations). Two processes opening the same path are guaranteed to access the

same shared memory object if and only if path begins with a slash (‘/’) character.

Only the O_RDONLY, O_RDWR, O_CREAT, O_EXCL, and O_TRUNC flags may be used in portable

programs.

POSIX specifications state that the result of using open(2), read(2), or write(2) on a shared memory

object, or on the descriptor returned by shm_open(), is undefined. However, the FreeBSD kernel

implementation explicitly includes support for read(2) and write(2).

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



FreeBSD also supports zero-copy transmission of data from shared memory objects with sendfile(2).

Neither shared memory objects nor their contents persist across reboots.

Writes do not extend shared memory objects, so ftruncate(2) must be called before any data can be

written. See EXAMPLES.

EXAMPLES
This example fails without the call to ftruncate(2):

uint8_t buffer[getpagesize()];

ssize_t len;

int fd;

fd = shm_open(SHM_ANON, O_RDWR | O_CREAT, 0600);

if (fd < 0)

err(EX_OSERR, "%s: shm_open", __func__);

if (ftruncate(fd, getpagesize()) < 0)

err(EX_IOERR, "%s: ftruncate", __func__);

len = pwrite(fd, buffer, getpagesize(), 0);

if (len < 0)

err(EX_IOERR, "%s: pwrite", __func__);

if (len != getpagesize())

errx(EX_IOERR, "%s: pwrite length mismatch", __func__);

ERRORS
memfd_create() fails with these error codes for these conditions:

[EBADF] The name argument was NULL.

[EINVAL] The name argument was too long.

An invalid or unsupported flag was included in flags.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[ENOSYS] In memfd_create, MFD_HUGETLB was specified in flags, and this system does

not support forced hugetlb mappings.

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



shm_open() fails with these error codes for these conditions:

[EINVAL] A flag other than O_RDONLY, O_RDWR, O_CREAT, O_EXCL, or O_TRUNC

was included in flags.

[EMFILE] The process has already reached its limit for open file descriptors.

[ENFILE] The system file table is full.

[EINVAL] O_RDONLY was specified while creating an anonymous shared memory object

via SHM_ANON.

[EFAULT] The path argument points outside the process’ allocated address space.

[ENAMETOOLONG]

The entire pathname exceeds 1023 characters.

[EINVAL] The path does not begin with a slash (‘/’) character.

[ENOENT] O_CREAT is not specified and the named shared memory object does not exist.

[EEXIST] O_CREAT and O_EXCL are specified and the named shared memory object does

exist.

[EACCES] The required permissions (for reading or reading and writing) are denied.

[ECAPMODE] The process is running in capability mode (see capsicum(4)) and attempted to

create a named shared memory object.

shm_create_largepage() can fail for the reasons listed above. It also fails with these error codes for the

following conditions:

[ENOTTY] The kernel does not support large pages on the current platform.

The following errors are defined for shm_rename():

[EFAULT] The path_from or path_to argument points outside the process’ allocated address

space.

[ENAMETOOLONG]

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



The entire pathname exceeds 1023 characters.

[ENOENT] The shared memory object at path_from does not exist.

[EACCES] The required permissions are denied.

[EEXIST] An shm exists at path_to, and the SHM_RENAME_NOREPLACE flag was

provided.

shm_unlink() fails with these error codes for these conditions:

[EFAULT] The path argument points outside the process’ allocated address space.

[ENAMETOOLONG]

The entire pathname exceeds 1023 characters.

[ENOENT] The named shared memory object does not exist.

[EACCES] The required permissions are denied. shm_unlink() requires write permission to

the shared memory object.

SEE ALSO
posixshmcontrol(1), close(2), fstat(2), ftruncate(2), ioctl(2), mmap(2), munmap(2), sendfile(2)

STANDARDS
The memfd_create() function is expected to be compatible with the Linux system call of the same name.

The shm_open() and shm_unlink() functions are believed to conform to IEEE Std 1003.1b-1993

("POSIX.1b").

HISTORY
The memfd_create() function appeared in FreeBSD 13.0.

The shm_open() and shm_unlink() functions first appeared in FreeBSD 4.3. The functions were

reimplemented as system calls using shared memory objects directly rather than files in FreeBSD 8.0.

shm_rename() first appeared in FreeBSD 13.0 as a FreeBSD extension.

AUTHORS
Garrett A. Wollman <wollman@FreeBSD.org> (C library support and this manual page)

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11



Matthew Dillon <dillon@FreeBSD.org> (MAP_NOSYNC)

Matthew Bryan <matthew.bryan@isilon.com> (shm_rename implementation)

SHM_OPEN(2) FreeBSD System Calls Manual SHM_OPEN(2)

FreeBSD 14.0-RELEASE-p11 January 30, 2023 FreeBSD 14.0-RELEASE-p11


