
NAME
libmemstat - library interface to retrieve kernel memory allocator statistics

LIBRARY
Kernel Memory Allocator Statistics Library (libmemstat, -lmemstat)

SYNOPSIS
#include <sys/types.h>
#include <memstat.h>

General Functions
const char *

memstat_strerror(int error);

Memory Type List Management Functions
struct memory_type_list *

memstat_mtl_alloc(void);

struct memory_type *

memstat_mtl_first(struct memory_type_list *list);

struct memory_type *

memstat_mtl_next(struct memory_type *mtp);

struct memory_type *

memstat_mtl_find(struct memory_type_list *list, int allocator, const char *name);

void

memstat_mtl_free(struct memory_type_list *list);

int

memstat_mtl_geterror(struct memory_type_list *list);

Allocator Query Functions
int

memstat_kvm_all(struct memory_type_list *list, void *kvm_handle);

int

memstat_kvm_malloc(struct memory_type_list *list, void *kvm_handle);

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



int

memstat_kvm_uma(struct memory_type_list *list, void *kvm_handle);

int

memstat_sysctl_all(struct memory_type_list *list, int flags);

int

memstat_sysctl_malloc(struct memory_type_list *list, int flags);

int

memstat_sysctl_uma(struct memory_type_list *list, int flags);

Memory Type Accessor Methods
const char *

memstat_get_name(const struct memory_type *mtp);

int

memstat_get_allocator(const struct memory_type *mtp);

uint64_t

memstat_get_countlimit(const struct memory_type *mtp);

uint64_t

memstat_get_byteslimit(const struct memory_type *mtp);

uint64_t

memstat_get_sizemask(const struct memory_type *mtp);

uint64_t

memstat_get_size(const struct memory_type *mtp);

uint64_t

memstat_get_rsize(const struct memory_type *mtp);

uint64_t

memstat_get_memalloced(const struct memory_type *mtp);

uint64_t

memstat_get_memfreed(const struct memory_type *mtp);

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



uint64_t

memstat_get_numallocs(const struct memory_type *mtp);

uint64_t

memstat_get_numfrees(const struct memory_type *mtp);

uint64_t

memstat_get_bytes(const struct memory_type *mtp);

uint64_t

memstat_get_count(const struct memory_type *mtp);

uint64_t

memstat_get_free(const struct memory_type *mtp);

uint64_t

memstat_get_failures(const struct memory_type *mtp);

void *

memstat_get_caller_pointer(const struct memory_type *mtp, int index);

void

memstat_set_caller_pointer(struct memory_type *mtp, int index, void *value);

uint64_t

memstat_get_caller_uint64(const struct memory_type *mtp, int index);

void

memstat_set_caller_uint64(struct memory_type *mtp, int index, uint64_t value);

uint64_t

memstat_get_zonefree(const struct memory_type *mtp);

uint64_t

memstat_get_kegfree(const struct memory_type *mtp);

uint64_t

memstat_get_percpu_memalloced(const struct memory_type *mtp, int cpu);

uint64_t

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



memstat_get_percpu_memfreed(const struct memory_type *mtp, int cpu);

uint64_t

memstat_get_percpu_numallocs(const struct memory_type *mtp, int cpu);

uint64_t

memstat_get_percpu_numfrees(const struct memory_type *mtp, int cpu);

uint64_t

memstat_get_percpu_sizemask(const struct memory_type *mtp, int cpu);

void *

memstat_get_percpu_caller_pointer(const struct memory_type *mtp, int cpu, int index);

void

memstat_set_percpu_caller_pointer(struct memory_type *mtp, int cpu, int index, void *value);

uint64_t

memstat_get_percpu_caller_uint64(const struct memory_type *mtp, int cpu, int index);

void

memstat_set_percpu_caller_uint64(struct memory_type *mtp, int cpu, int index, uint64_t value);

uint64_t

memstat_get_percpu_free(const struct memory_type *mtp, int cpu);

DESCRIPTION
libmemstat provides an interface to retrieve kernel memory allocator statistics, for the purposes of

debugging and system monitoring, insulating applications from implementation details of the allocators,

and allowing a tool to transparently support multiple allocators. libmemstat supports both retrieving a

single statistics snapshot, as well as incrementally updating statistics for long-term monitoring.

libmemstat describes each memory type using a struct memory_type, an opaque memory type accessed

by the application using accessor functions in the library. libmemstat returns and updates chains of

struct memory_type via a struct memory_type_list, which will be allocated by calling

memstat_mtl_alloc(), and freed on completion using memstat_mtl_free(). Lists of memory types are

populated via calls that query the kernel for statistics information; currently: memstat_kvm_all(),
memstat_kvm_malloc(), memstat_kvm_uma(), memstat_sysctl_all(), memstat_sysctl_uma(), and

memstat_sysctl_malloc(). Repeated calls will incrementally update the list of memory types, permitting

tracking over time without recreating all list state. If an error is detected during a query call, error

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



condition information may be retrieved using memstat_mtl_geterror(), and converted to a user-readable

string using memstat_strerror().

Freeing the list will free all memory type data in the list, and so invalidates any outstanding pointers to

entries in the list. struct memory_type entries in the list may be iterated over using memstat_mtl_first()
and memstat_mtl_next(), which respectively return the first entry in a list, and the next entry in a list.

memstat_mtl_find(), which will return a pointer to the first entry matching the passed parameters.

A series of accessor methods is provided to access fields of the structure, including retrieving statistics

and properties, as well as setting of caller owned fields. Direct application access to the data structure

fields is not supported.

Library memory_type Ss Fields

Each struct memory_type holds a description of the memory type, including its name and the allocator it

is managed by, as well as current statistics on use. Some statistics are directly measured, others are

derived from directly measured statistics. Certain high level statistics are present across all available

allocators, such as the number of allocation and free operations; other measurements, such as the

quantity of free items in per-CPU caches, or administrative limit on the number of allocations, is

available only for specific allocators.

Caller memory_type Ss Fields

struct memory_type includes fields to allow the application to store data, in the form of pointers and

64-bit integers, with memory types. For example, the application author might make use of one of the

caller pointers to reference a more complex data structure tracking long-term behavior of the memory

type, or a window system object that is used to render the state of the memory type. General and per-

CPU storage is provided with each struct memory_type in the form of an array of pointers and integers.

The array entries are accessed via the index argument to the get and set accessor methods. Possible

values of index range between 0 and MEMSTAT_MAXCALLER.

Caller-owned fields are initialized to 0 or NULL when a new struct memory_type is allocated and

attached to a memory type list; these fields retain their values across queries that update library-owned

fields.

Allocator Types
Currently, libmemstat supports two kernel allocators: ALLOCATOR_UMA for uma(9), and

ALLOCATOR_MALLOC for malloc(9). These values may be passed to memstat_mtl_find(), and will

be returned by memstat_get_allocator(). Two additional constants in the allocator name space are

defined: ALLOCATOR_UNKNOWN, which will only be returned as a result of a library error, and

ALLOCATOR_ANY, which can be used to specify that returning types matching any allocator is

permittable from memstat_mtl_find().

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



Access Method List
The following accessor methods are defined, of which some will be valid for a given memory type:

memstat_get_name()

Return a pointer to the name of the memory type. Memory for the name is owned by libmemstat
and will be valid through a call to memstat_mtl_free(). Note that names will be unique with

respect to a single allocator, but that the same name might be used by different memory types

owned by different memory allocators.

memstat_get_allocator()

Return an integer identifier for the memory allocator that owns the memory type.

memstat_get_countlimit()
If the memory type has an administrative limit on the number of simultaneous allocations, return

it.

memstat_get_byteslimit()
If the memory type has an administrative limit on the number of bytes of memory that may be

simultaneously allocated for the memory type, return it.

memstat_get_sizemask()

If the memory type supports variable allocation sizes, return a bitmask of sizes allocated for the

memory type.

memstat_get_size()

If the memory type supports a fixed allocation size, return that size.

memstat_get_rsize()

If the memory type supports a fixed allocation size, return real size of an allocation. Real size

can exceed requested size due to alignment constraints or implicit padding.

memstat_get_memalloced()

Return the total number of bytes allocated for the memory type over its lifetime.

memstat_get_memfreed()

Return the total number of bytes freed for the memory type over its lifetime.

memstat_get_numallocs()

Return the total number of allocations for the memory type over its lifetime.

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



memstat_get_numfrees()

Return the total number of frees for the memory type over its lifetime.

memstat_get_bytes()

Return the current number of bytes allocated to the memory type.

memstat_get_count()
Return the current number of allocations for the memory type.

memstat_get_free()

If the memory allocator supports a cache, return the number of items in the cache.

memstat_get_failures()

If the memory allocator and type permit allocation failures, return the number of allocation

failures measured.

memstat_get_caller_pointer()

Return a caller-owned pointer for the memory type.

memstat_set_caller_pointer()

Set a caller-owned pointer for the memory type.

memstat_get_caller_uint64()

Return a caller-owned integer for the memory type.

memstat_set_caller_uint64()

Set a caller-owned integer for the memory type.

memstat_get_zonefree()

If the memory allocator supports a multi-level allocation structure, return the number of cached

items in the zone. These items will be in a fully constructed state available for immediate use.

memstat_get_kegfree()

If the memory allocator supports a multi-level allocation structure, return the number of cached

items in the keg. These items may be in a partially constructed state, and may require further

processing before they can be made available for use.

memstat_get_percpu_memalloced()

If the memory allocator supports per-CPU statistics, return the number of bytes of memory

allocated for the memory type on the CPU over its lifetime.

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



memstat_get_percpu_memfreed()

If the memory allocator supports per-CPU statistics, return the number of bytes of memory freed

from the memory type on the CPU over its lifetime.

memstat_get_percpu_numallocs()

If the memory allocator supports per-CPU statistics, return the number of allocations for the

memory type on the CPU over its lifetime.

memstat_get_percpu_numfrees()

If the memory allocator supports per-CPU statistics, return the number of frees for the memory

type on the CPU over its lifetime.

memstat_get_percpu_sizemask()

If the memory allocator supports variable size memory allocation and per-CPU statistics, return

the size bitmask for the memory type on the CPU.

memstat_get_percpu_caller_pointer()

Return a caller-owned per-CPU pointer for the memory type.

memstat_set_percpu_caller_pointer()

Set a caller-owned per-CPU pointer for the memory type.

memstat_get_percpu_caller_uint64()

Return a caller-owned per-CPU integer for the memory type.

memstat_set_percpu_caller_uint64()

Set a caller-owned per-CPU integer for the memory type.

memstat_get_percpu_free()

If the memory allocator supports a per-CPU cache, return the number of free items in the per-

CPU cache of the designated CPU.

RETURN VALUES
libmemstat functions fall into three categories: functions returning a pointer to an object, functions

returning an integer return value, and functions implementing accessor methods returning data from a

struct memory_type.

Functions returning a pointer to an object will generally return NULL on failure. memstat_mtl_alloc()

will return an error value via errno, which will consist of the value ENOMEM. Functions

memstat_mtl_first(), memstat_mtl_next(), and memstat_mtl_find() will return NULL when there is no

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



entry or match in the list; however, this is not considered a failure mode and no error value is available.

Functions returning an integer success value will return 0 on success, or -1 on failure. If a failure is

returned, the list error access method, memstat_mtl_geterror(), may be used to retrieve the error state.

The string representation of the error may be retrieved using memstat_strerror(). Possible error values

are:

MEMSTAT_ERROR_UNDEFINED Undefined error. Occurs if memstat_mtl_geterror() is

called on a list before an error associated with the list has

occurred.

MEMSTAT_ERROR_NOMEMORY Insufficient memory. Occurs if library calls to malloc(3)

fail, or if a system call to retrieve kernel statistics fails

with ENOMEM.

MEMSTAT_ERROR_VERSION Returned if the current version of libmemstat is unable to

interpret the statistics data returned by the kernel due to an

explicit version mismatch, or to differences in data

structures that cannot be reconciled.

MEMSTAT_ERROR_PERMISSION Returned if a statistics source returns errno values of

EACCES or EPERM.

MEMSTAT_ERROR_DATAERROR Returned if libmemstat is unable to interpret statistics data

returned by the data source, even though there does not

appear to be a version problem.

MEMSTAT_ERROR_KVM Returned if libmemstat experiences an error while using

kvm(3) interfaces to query statistics data. Use

kvm_geterr(3) to retrieve the error.

MEMSTAT_ERROR_KVM_NOSYMBOL Returned if libmemstat is unable to read a required

symbol from the kernel being operated on.

MEMSTAT_ERROR_KVM_SHORTREAD Returned if libmemstat attempts to read data from a live

memory image or kernel core dump and insufficient data

is returned.

Finally, functions returning data from a struct memory_type pointer are not permitted to fail, and

directly return either a statistic or pointer to a string.

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6



EXAMPLES
Create a memory type list, query the uma(9) memory allocator for available statistics, and print out the

number of allocations performed by the mbuf zone.

struct memory_type_list *mtlp;

struct memory_type *mtp;

uint64_t mbuf_count;

mtlp = memstat_mtl_alloc();

if (mtlp == NULL)

err(-1, "memstat_mtl_alloc");

if (memstat_sysctl_uma(mtlp, 0) < 0)

err(-1, "memstat_sysctl_uma");

mtp = memstat_mtl_find(mtlp, ALLOCATOR_UMA, "mbuf");

if (mtp == NULL)

errx(-1, "memstat_mtl_find: mbuf not found");

mbuf_count = memstat_get_count(mtp);

memstat_mtl_free(mtlp);

printf("mbufs: %llu\n", (unsigned long long)mbuf_count);

SEE ALSO
malloc(9), uma(9)

HISTORY
The libmemstat library appeared in FreeBSD 6.0.

AUTHORS
The kernel memory allocator changes necessary to support a general purpose monitoring library, along

with the library, were written by Robert Watson <rwatson@FreeBSD.org>.

BUGS
There are memory allocators in the kernel, such as the VM page allocator and sf_buf allocator, which

are not currently supported by libmemstat.

Once a memory type is present on a memory type list, it will not be removed even if the kernel no longer

presents information on the type via its monitoring interfaces. In order to flush removed memory types,

it is necessary to free the entire list and allocate a new one.

LIBMEMSTAT(3) FreeBSD Library Functions Manual LIBMEMSTAT(3)

FreeBSD 14.0-RELEASE-p6 February 11, 2014 FreeBSD 14.0-RELEASE-p6


