
NAME
migration_guide - OpenSSL migration guide

SYNOPSIS
See the individual manual pages for details.

DESCRIPTION
This guide details the changes required to migrate to new versions of OpenSSL. Currently this covers

OpenSSL 3.0. For earlier versions refer to

<https://github.com/openssl/openssl/blob/master/CHANGES.md>. For an overview of some of the key

concepts introduced in OpenSSL 3.0 see crypto(7).

OPENSSL 3.0
Main Changes from OpenSSL 1.1.1

Major Release

OpenSSL 3.0 is a major release and consequently any application that currently uses an older version

of OpenSSL will at the very least need to be recompiled in order to work with the new version. It is the

intention that the large majority of applications will work unchanged with OpenSSL 3.0 if those

applications previously worked with OpenSSL 1.1.1. However this is not guaranteed and some changes

may be required in some cases. Changes may also be required if applications need to take advantage of

some of the new features available in OpenSSL 3.0 such as the availability of the FIPS module.

License Change

In previous versions, OpenSSL was licensed under the dual OpenSSL and SSLeay licenses

<https://www.openssl.org/source/license-openssl-ssleay.txt> (both licenses apply). From OpenSSL 3.0

this is replaced by the Apache License v2 <https://www.openssl.org/source/apache-license-2.0.txt>.

Providers and FIPS support

One of the key changes from OpenSSL 1.1.1 is the introduction of the Provider concept. Providers

collect together and make available algorithm implementations. With OpenSSL 3.0 it is possible to

specify, either programmatically or via a config file, which providers you want to use for any given

application. OpenSSL 3.0 comes with 5 different providers as standard. Over time third parties may

distribute additional providers that can be plugged into OpenSSL. All algorithm implementations

available via providers are accessed through the "high level" APIs (for example those functions

prefixed with "EVP"). They cannot be accessed using the "Low Level APIs".

One of the standard providers available is the FIPS provider. This makes available FIPS validated

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



cryptographic algorithms. The FIPS provider is disabled by default and needs to be enabled explicitly

at configuration time using the "enable-fips" option. If it is enabled, the FIPS provider gets built and

installed in addition to the other standard providers. No separate installation procedure is necessary.

There is however a dedicated "install_fips" make target, which serves the special purpose of installing

only the FIPS provider into an existing OpenSSL installation.

Not all algorithms may be available for the application at a particular moment. If the application code

uses any digest or cipher algorithm via the EVP interface, the application should verify the result of the

EVP_EncryptInit(3), EVP_EncryptInit_ex(3), and EVP_DigestInit(3) functions. In case when the

requested algorithm is not available, these functions will fail.

See also "Legacy Algorithms" for information on the legacy provider.

See also "Completing the installation of the FIPS Module" and "Using the FIPS Module in

applications".

Low Level APIs

OpenSSL has historically provided two sets of APIs for invoking cryptographic algorithms: the "high

level" APIs (such as the "EVP" APIs) and the "low level" APIs. The high level APIs are typically

designed to work across all algorithm types. The "low level" APIs are targeted at a specific algorithm

implementation. For example, the EVP APIs provide the functions EVP_EncryptInit_ex(3),

EVP_EncryptUpdate(3) and EVP_EncryptFinal(3) to perform symmetric encryption. Those functions

can be used with the algorithms AES, CHACHA, 3DES etc. On the other hand, to do AES encryption

using the low level APIs you would have to call AES specific functions such as

AES_set_encrypt_key(3), AES_encrypt(3), and so on. The functions for 3DES are different. Use of

the low level APIs has been informally discouraged by the OpenSSL development team for a long

time. However in OpenSSL 3.0 this is made more formal. All such low level APIs have been

deprecated. You may still use them in your applications, but you may start to see deprecation warnings

during compilation (dependent on compiler support for this). Deprecated APIs may be removed from

future versions of OpenSSL so you are strongly encouraged to update your code to use the high level

APIs instead.

This is described in more detail in "Deprecation of Low Level Functions"

Legacy Algorithms

Some cryptographic algorithms such as MD2 and DES that were available via the EVP APIs are now

considered legacy and their use is strongly discouraged. These legacy EVP algorithms are still

available in OpenSSL 3.0 but not by default. If you want to use them then you must load the legacy

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



provider. This can be as simple as a config file change, or can be done programmatically. See

OSSL_PROVIDER-legacy(7) for a complete list of algorithms. Applications using the EVP APIs to

access these algorithms should instead use more modern algorithms. If that is not possible then these

applications should ensure that the legacy provider has been loaded. This can be achieved either

programmatically or via configuration. See crypto(7) man page for more information about providers.

Engines and "METHOD" APIs

The refactoring to support Providers conflicts internally with the APIs used to support engines,

including the ENGINE API and any function that creates or modifies custom "METHODS" (for

example EVP_MD_meth_new(3), EVP_CIPHER_meth_new(3), EVP_PKEY_meth_new(3),

RSA_meth_new(3), EC_KEY_METHOD_new(3), etc.). These functions are being deprecated in

OpenSSL 3.0, and users of these APIs should know that their use can likely bypass provider selection

and configuration, with unintended consequences. This is particularly relevant for applications written

to use the OpenSSL 3.0 FIPS module, as detailed below. Authors and maintainers of external engines

are strongly encouraged to refactor their code transforming engines into providers using the new

Provider API and avoiding deprecated methods.

Support of legacy engines

If openssl is not built without engine support or deprecated API support, engines will still work.

However, their applicability will be limited.

New algorithms provided via engines will still work.

Engine-backed keys can be loaded via custom OSSL_STORE implementation. In this case the

EVP_PKEY objects created via ENGINE_load_private_key(3) will be considered legacy and will

continue to work.

To ensure the future compatibility, the engines should be turned to providers. To prefer the provider-

based hardware offload, you can specify the default properties to prefer your provider.

Versioning Scheme

The OpenSSL versioning scheme has changed with the OpenSSL 3.0 release. The new versioning

scheme has this format:

MAJOR.MINOR.PATCH

For OpenSSL 1.1.1 and below, different patch levels were indicated by a letter at the end of the release

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



version number. This will no longer be used and instead the patch level is indicated by the final number

in the version. A change in the second (MINOR) number indicates that new features may have been

added. OpenSSL versions with the same major number are API and ABI compatible. If the major

number changes then API and ABI compatibility is not guaranteed.

For more information, see OpenSSL_version(3).

Other major new features

Certificate Management Protocol (CMP, RFC 4210)

This also covers CRMF (RFC 4211) and HTTP transfer (RFC 6712) See openssl-cmp(1) and

OSSL_CMP_exec_certreq(3) as starting points.

HTTP(S) client

A proper HTTP(S) client that supports GET and POST, redirection, plain and ASN.1-encoded contents,

proxies, and timeouts.

Key Derivation Function API (EVP_KDF)

This simplifies the process of adding new KDF and PRF implementations.

Previously KDF algorithms had been shoe-horned into using the EVP_PKEY object which was not a

logical mapping. Existing applications that use KDF algorithms using EVP_PKEY (scrypt, TLS1 PRF

and HKDF) may be slower as they use an EVP_KDF bridge internally. All new applications should

use the new EVP_KDF(3) interface. See also "Key Derivation Function (KDF)" in

OSSL_PROVIDER-default(7) and "Key Derivation Function (KDF)" in OSSL_PROVIDER-FIPS(7).

Message Authentication Code API (EVP_MAC)

This simplifies the process of adding MAC implementations.

This includes a generic EVP_PKEY to EVP_MAC bridge, to facilitate the continued use of MACs

through raw private keys in functionality such as EVP_DigestSign(3) and EVP_DigestVerify(3).

All new applications should use the new EVP_MAC(3) interface. See also "Message Authentication

Code (MAC)" in OSSL_PROVIDER-default(7) and "Message Authentication Code (MAC)" in

OSSL_PROVIDER-FIPS(7).

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



Algorithm Fetching

Using calls to convenience functions such as EVP_sha256() and EVP_aes_256_gcm() may incur a

performance penalty when using providers. Retrieving algorithms from providers involves searching

for an algorithm by name. This is much slower than directly accessing a method table. It is

recommended to prefetch algorithms if an algorithm is used many times. See "Performance" in

crypto(7), "Explicit fetching" in crypto(7) and "Implicit fetching" in crypto(7).

Support for Linux Kernel TLS

In order to use KTLS, support for it must be compiled in using the "enable-ktls" configuration option.

It must also be enabled at run time using the SSL_OP_ENABLE_KTLS option.

New Algorithms

+o KDF algorithms "SINGLE STEP" and "SSH"

See EVP_KDF-SS(7) and EVP_KDF-SSHKDF(7)

+o MAC Algorithms "GMAC" and "KMAC"

See EVP_MAC-GMAC(7) and EVP_MAC-KMAC(7).

+o KEM Algorithm "RSASVE"

See EVP_KEM-RSA(7).

+o Cipher Algorithm "AES-SIV"

See "SIV Mode" in EVP_EncryptInit(3).

+o AES Key Wrap inverse ciphers supported by EVP layer.

The inverse ciphers use AES decryption for wrapping, and AES encryption for unwrapping. The

algorithms are: "AES-128-WRAP-INV", "AES-192-WRAP-INV", "AES-256-WRAP-INV",

"AES-128-WRAP-PAD-INV", "AES-192-WRAP-PAD-INV" and "AES-256-WRAP-PAD-INV".

+o CTS ciphers added to EVP layer.

The algorithms are "AES-128-CBC-CTS", "AES-192-CBC-CTS", "AES-256-CBC-CTS",

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



"CAMELLIA-128-CBC-CTS", "CAMELLIA-192-CBC-CTS" and

"CAMELLIA-256-CBC-CTS". CS1, CS2 and CS3 variants are supported.

CMS and PKCS#7 updates

+o Added CAdES-BES signature verification support.

+o Added CAdES-BES signature scheme and attributes support (RFC 5126) to CMS API.

+o Added AuthEnvelopedData content type structure (RFC 5083) using AES_GCM

This uses the AES-GCM parameter (RFC 5084) for the Cryptographic Message Syntax. Its

purpose is to support encryption and decryption of a digital envelope that is both authenticated and

encrypted using AES GCM mode.

+o PKCS7_get_octet_string(3) and PKCS7_type_is_other(3) were made public.

PKCS#12 API updates

The default algorithms for pkcs12 creation with the PKCS12_create() function were changed to more

modern PBKDF2 and AES based algorithms. The default MAC iteration count was changed to

PKCS12_DEFAULT_ITER to make it equal with the password-based encryption iteration count. The

default digest algorithm for the MAC computation was changed to SHA-256. The pkcs12 application

now supports -legacy option that restores the previous default algorithms to support interoperability

with legacy systems.

Added enhanced PKCS#12 APIs which accept a library context OSSL_LIB_CTX and (where relevant)

a property query. Other APIs which handle PKCS#7 and PKCS#8 objects have also been enhanced

where required. This includes:

PKCS12_add_key_ex(3), PKCS12_add_safe_ex(3), PKCS12_add_safes_ex(3), PKCS12_create_ex(3),

PKCS12_decrypt_skey_ex(3), PKCS12_init_ex(3), PKCS12_item_decrypt_d2i_ex(3),

PKCS12_item_i2d_encrypt_ex(3), PKCS12_key_gen_asc_ex(3), PKCS12_key_gen_uni_ex(3),

PKCS12_key_gen_utf8_ex(3), PKCS12_pack_p7encdata_ex(3), PKCS12_pbe_crypt_ex(3),

PKCS12_PBE_keyivgen_ex(3), PKCS12_SAFEBAG_create_pkcs8_encrypt_ex(3),

PKCS5_pbe2_set_iv_ex(3), PKCS5_pbe_set0_algor_ex(3), PKCS5_pbe_set_ex(3),

PKCS5_pbkdf2_set_ex(3), PKCS5_v2_PBE_keyivgen_ex(3), PKCS5_v2_scrypt_keyivgen_ex(3),

PKCS8_decrypt_ex(3), PKCS8_encrypt_ex(3), PKCS8_set0_pbe_ex(3).

As part of this change the EVP_PBE_xxx APIs can also accept a library context and property query

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



and will call an extended version of the key/IV derivation function which supports these parameters.

This includes EVP_PBE_CipherInit_ex(3), EVP_PBE_find_ex(3) and EVP_PBE_scrypt_ex(3).

PKCS#12 KDF versus FIPS

Unlike in 1.x.y, the PKCS12KDF algorithm used when a PKCS#12 structure is created with a MAC

that does not work with the FIPS provider as the PKCS12KDF is not a FIPS approvable mechanism.

See EVP_KDF-PKCS12KDF(7), PKCS12_create(3), openssl-pkcs12(1), OSSL_PROVIDER-FIPS(7).

Windows thread synchronization changes

Windows thread synchronization uses read/write primitives (SRWLock) when supported by the OS,

otherwise CriticalSection continues to be used.

Trace API

A new generic trace API has been added which provides support for enabling instrumentation through

trace output. This feature is mainly intended as an aid for developers and is disabled by default. To

utilize it, OpenSSL needs to be configured with the "enable-trace" option.

If the tracing API is enabled, the application can activate trace output by registering BIOs as trace

channels for a number of tracing and debugging categories. See OSSL_trace_enabled(3).

Key validation updates

EVP_PKEY_public_check(3) and EVP_PKEY_param_check(3) now work for more key types. This

includes RSA, DSA, ED25519, X25519, ED448 and X448. Previously (in 1.1.1) they would return -2.

For key types that do not have parameters then EVP_PKEY_param_check(3) will always return 1.

Other notable deprecations and changes

The function code part of an OpenSSL error code is no longer relevant

This code is now always set to zero. Related functions are deprecated.

STACK and HASH macros have been cleaned up

The type-safe wrappers are declared everywhere and implemented once. See DEFINE_STACK_OF(3)

and DECLARE_LHASH_OF(3).

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



The RAND_DRBG subsystem has been removed

The new EVP_RAND(3) is a partial replacement: the DRBG callback framework is absent. The

RAND_DRBG API did not fit well into the new provider concept as implemented by EVP_RAND and

EVP_RAND_CTX.

Removed FIPS_mode() and FIPS_mode_set()

These functions are legacy APIs that are not applicable to the new provider model. Applications should

instead use EVP_default_properties_is_fips_enabled(3) and EVP_default_properties_enable_fips(3).

Key generation is slower

The Miller-Rabin test now uses 64 rounds, which is used for all prime generation, including RSA key

generation. This affects the time for larger keys sizes.

The default key generation method for the regular 2-prime RSA keys was changed to the FIPS186-4

B.3.6 method (Generation of Probable Primes with Conditions Based on Auxiliary Probable Primes).

This method is slower than the original method.

Change PBKDF2 to conform to SP800-132 instead of the older PKCS5 RFC2898

This checks that the salt length is at least 128 bits, the derived key length is at least 112 bits, and that

the iteration count is at least 1000. For backwards compatibility these checks are disabled by default in

the default provider, but are enabled by default in the FIPS provider.

To enable or disable the checks see OSSL_KDF_PARAM_PKCS5 in EVP_KDF-PBKDF2(7). The

parameter can be set using EVP_KDF_derive(3).

Enforce a minimum DH modulus size of 512 bits

Smaller sizes now result in an error.

SM2 key changes

EC EVP_PKEYs with the SM2 curve have been reworked to automatically become EVP_PKEY_SM2

rather than EVP_PKEY_EC.

Unlike in previous OpenSSL versions, this means that applications cannot call

"EVP_PKEY_set_alias_type(pkey, EVP_PKEY_SM2)" to get SM2 computations.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



Parameter and key generation is also reworked to make it possible to generate EVP_PKEY_SM2

parameters and keys. Applications must now generate SM2 keys directly and must not create an

EVP_PKEY_EC key first. It is no longer possible to import an SM2 key with domain parameters other

than the SM2 elliptic curve ones.

Validation of SM2 keys has been separated from the validation of regular EC keys, allowing to

improve the SM2 validation process to reject loaded private keys that are not conforming to the SM2

ISO standard. In particular, a private scalar k outside the range 1 <= k < n-1 is now correctly rejected.

EVP_PKEY_set_alias_type() method has been removed

This function made a EVP_PKEY object mutable after it had been set up. In OpenSSL 3.0 it was

decided that a provided key should not be able to change its type, so this function has been removed.

Functions that return an internal key should be treated as read only

Functions such as EVP_PKEY_get0_RSA(3) behave slightly differently in OpenSSL 3.0. Previously

they returned a pointer to the low-level key used internally by libcrypto. From OpenSSL 3.0 this key

may now be held in a provider. Calling these functions will only return a handle on the internal key

where the EVP_PKEY was constructed using this key in the first place, for example using a function or

macro such as EVP_PKEY_assign_RSA(3), EVP_PKEY_set1_RSA(3), etc. Where the EVP_PKEY

holds a provider managed key, then these functions now return a cached copy of the key. Changes to

the internal provider key that take place after the first time the cached key is accessed will not be

reflected back in the cached copy. Similarly any changes made to the cached copy by application code

will not be reflected back in the internal provider key.

For the above reasons the keys returned from these functions should typically be treated as read-only.

To emphasise this the value returned from EVP_PKEY_get0_RSA(3), EVP_PKEY_get0_DSA(3),

EVP_PKEY_get0_EC_KEY(3) and EVP_PKEY_get0_DH(3) have been made const. This may break

some existing code. Applications broken by this change should be modified. The preferred solution is

to refactor the code to avoid the use of these deprecated functions. Failing this the code should be

modified to use a const pointer instead. The EVP_PKEY_get1_RSA(3), EVP_PKEY_get1_DSA(3),

EVP_PKEY_get1_EC_KEY(3) and EVP_PKEY_get1_DH(3) functions continue to return a non-const

pointer to enable them to be "freed". However they should also be treated as read-only.

The public key check has moved from EVP_PKEY_derive() to EVP_PKEY_derive_set_peer()

This may mean result in an error in EVP_PKEY_derive_set_peer(3) rather than during

EVP_PKEY_derive(3). To disable this check use EVP_PKEY_derive_set_peer_ex(dh, peer, 0).

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



The print format has cosmetic changes for some functions

The output from numerous "printing" functions such as X509_signature_print(3), X509_print_ex(3),

X509_CRL_print_ex(3), and other similar functions has been amended such that there may be

cosmetic differences between the output observed in 1.1.1 and 3.0. This also applies to the -text output

from the openssl x509 and openssl crl applications.

Interactive mode from the openssl program has been removed

From now on, running it without arguments is equivalent to openssl help.

The error return values from some control calls (ctrl) have changed

One significant change is that controls which used to return -2 for invalid inputs, now return -1

indicating a generic error condition instead.

DH and DHX key types have different settable parameters

Previously (in 1.1.1) these conflicting parameters were allowed, but will now result in errors. See

EVP_PKEY-DH(7) for further details. This affects the behaviour of openssl-genpkey(1) for DH

parameter generation.

EVP_CIPHER_CTX_set_flags() ordering change

If using a cipher from a provider the EVP_CIPH_FLAG_LENGTH_BITS flag can only be set after the

cipher has been assigned to the cipher context. See "FLAGS" in EVP_EncryptInit(3) for more

information.

Validation of operation context parameters

Due to move of the implementation of cryptographic operations to the providers, validation of various

operation parameters can be postponed until the actual operation is executed where previously it

happened immediately when an operation parameter was set.

For example when setting an unsupported curve with

EVP_PKEY_CTX_set_ec_paramgen_curve_nid() this function call will not fail but later keygen

operations with the EVP_PKEY_CTX will fail.

Removal of function code from the error codes

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



The function code part of the error code is now always set to 0. For that reason the ERR_GET_FUNC()
macro was removed. Applications must resolve the error codes only using the library number and the

reason code.

ChaCha20-Poly1305 cipher does not allow a truncated IV length to be used

In OpenSSL 3.0 setting the IV length to any value other than 12 will result in an error. Prior to

OpenSSL 3.0 the ivlen could be smaller that the required 12 byte length, using

EVP_CIPHER_CTX_ctrl(ctx, EVP_CRTL_AEAD_SET_IVLEN, ivlen, NULL). This resulted in an

IV that had leading zero padding.

Installation and Compilation
Please refer to the INSTALL.md file in the top of the distribution for instructions on how to build and

install OpenSSL 3.0. Please also refer to the various platform specific NOTES files for your specific

platform.

Upgrading from OpenSSL 1.1.1
Upgrading to OpenSSL 3.0 from OpenSSL 1.1.1 should be relatively straight forward in most cases.

The most likely area where you will encounter problems is if you have used low level APIs in your

code (as discussed above). In that case you are likely to start seeing deprecation warnings when

compiling your application. If this happens you have 3 options:

1. Ignore the warnings. They are just warnings. The deprecated functions are still present and you

may still use them. However be aware that they may be removed from a future version of

OpenSSL.

2. Suppress the warnings. Refer to your compiler documentation on how to do this.

3. Remove your usage of the low level APIs. In this case you will need to rewrite your code to use

the high level APIs instead

Error code changes

As OpenSSL 3.0 provides a brand new Encoder/Decoder mechanism for working with widely used file

formats, application code that checks for particular error reason codes on key loading failures might

need an update.

Password-protected keys may deserve special attention. If only some errors are treated as an indicator

that the user should be asked about the password again, it’s worth testing these scenarios and

processing the newly relevant codes.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



There may be more cases to treat specially, depending on the calling application code.

Upgrading from OpenSSL 1.0.2
Upgrading to OpenSSL 3.0 from OpenSSL 1.0.2 is likely to be significantly more difficult. In addition

to the issues discussed above in the section about "Upgrading from OpenSSL 1.1.1", the main things to

be aware of are:

1. The build and installation procedure has changed significantly.

Check the file INSTALL.md in the top of the installation for instructions on how to build and

install OpenSSL for your platform. Also read the various NOTES files in the same directory, as

applicable for your platform.

2. Many structures have been made opaque in OpenSSL 3.0.

The structure definitions have been removed from the public header files and moved to internal

header files. In practice this means that you can no longer stack allocate some structures. Instead

they must be heap allocated through some function call (typically those function names have a

"_new" suffix to them). Additionally you must use "setter" or "getter" functions to access the

fields within those structures.

For example code that previously looked like this:

EVP_MD_CTX md_ctx;

/* This line will now generate compiler errors */

EVP_MD_CTX_init(&md_ctx);

The code needs to be amended to look like this:

EVP_MD_CTX *md_ctx;

md_ctx = EVP_MD_CTX_new();

...

...

EVP_MD_CTX_free(md_ctx);

3. Support for TLSv1.3 has been added.

This has a number of implications for SSL/TLS applications. See the TLS1.3 page

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



<https://wiki.openssl.org/index.php/TLS1.3> for further details.

More details about the breaking changes between OpenSSL versions 1.0.2 and 1.1.0 can be found on

the OpenSSL 1.1.0 Changes page <https://wiki.openssl.org/index.php/OpenSSL_1.1.0_Changes>.

Upgrading from the OpenSSL 2.0 FIPS Object Module

The OpenSSL 2.0 FIPS Object Module was a separate download that had to be built separately and

then integrated into your main OpenSSL 1.0.2 build. In OpenSSL 3.0 the FIPS support is fully

integrated into the mainline version of OpenSSL and is no longer a separate download. For further

information see "Completing the installation of the FIPS Module".

The function calls FIPS_mode() and FIPS_mode_set() have been removed from OpenSSL 3.0. You

should rewrite your application to not use them. See fips_module(7) and OSSL_PROVIDER-FIPS(7)

for details.

Completing the installation of the FIPS Module
The FIPS Module will be built and installed automatically if FIPS support has been configured. The

current documentation can be found in the README-FIPS

<https://github.com/openssl/openssl/blob/master/README-FIPS.md> file.

Programming
Applications written to work with OpenSSL 1.1.1 will mostly just work with OpenSSL 3.0. However

changes will be required if you want to take advantage of some of the new features that OpenSSL 3.0

makes available. In order to do that you need to understand some new concepts introduced in OpenSSL

3.0. Read "Library contexts" in crypto(7) for further information.

Library Context

A library context allows different components of a complex application to each use a different library

context and have different providers loaded with different configuration settings. See "Library

contexts" in crypto(7) for further info.

If the user creates an OSSL_LIB_CTX via OSSL_LIB_CTX_new(3) then many functions may need to

be changed to pass additional parameters to handle the library context.

Using a Library Context - Old functions that should be changed

If a library context is needed then all EVP_* digest functions that return a const EVP_MD * such as

EVP_sha256() should be replaced with a call to EVP_MD_fetch(3). See "ALGORITHM FETCHING"

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



in crypto(7).

If a library context is needed then all EVP_* cipher functions that return a const EVP_CIPHER * such

as EVP_aes_128_cbc() should be replaced vith a call to EVP_CIPHER_fetch(3). See "ALGORITHM

FETCHING" in crypto(7).

Some functions can be passed an object that has already been set up with a library context such as

d2i_X509(3), d2i_X509_CRL(3), d2i_X509_REQ(3) and d2i_X509_PUBKEY(3). If NULL is passed

instead then the created object will be set up with the default library context. Use X509_new_ex(3),

X509_CRL_new_ex(3), X509_REQ_new_ex(3) and X509_PUBKEY_new_ex(3) if a library context is

required.

All functions listed below with a NAME have a replacement function NAME_ex that takes

OSSL_LIB_CTX as an additional argument. Functions that have other mappings are listed along with

the respective name.

+o ASN1_item_new(3), ASN1_item_d2i(3), ASN1_item_d2i_fp(3), ASN1_item_d2i_bio(3),

ASN1_item_sign(3) and ASN1_item_verify(3)

+o BIO_new(3)

+o b2i_RSA_PVK_bio() and i2b_PVK_bio()

+o BN_CTX_new(3) and BN_CTX_secure_new(3)

+o CMS_AuthEnvelopedData_create(3), CMS_ContentInfo_new(3), CMS_data_create(3),

CMS_digest_create(3), CMS_EncryptedData_encrypt(3), CMS_encrypt(3),

CMS_EnvelopedData_create(3), CMS_ReceiptRequest_create0(3) and CMS_sign(3)

+o CONF_modules_load_file(3)

+o CTLOG_new(3), CTLOG_new_from_base64(3) and CTLOG_STORE_new(3)

+o CT_POLICY_EVAL_CTX_new(3)

+o d2i_AutoPrivateKey(3), d2i_PrivateKey(3) and d2i_PUBKEY(3)

+o d2i_PrivateKey_bio(3) and d2i_PrivateKey_fp(3)

Use d2i_PrivateKey_ex_bio(3) and d2i_PrivateKey_ex_fp(3)

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o EC_GROUP_new(3)

Use EC_GROUP_new_by_curve_name_ex(3) or EC_GROUP_new_from_params(3).

+o EVP_DigestSignInit(3) and EVP_DigestVerifyInit(3)

+o EVP_PBE_CipherInit(3), EVP_PBE_find(3) and EVP_PBE_scrypt(3)

+o PKCS5_PBE_keyivgen(3)

+o EVP_PKCS82PKEY(3)

+o EVP_PKEY_CTX_new_id(3)

Use EVP_PKEY_CTX_new_from_name(3)

+o EVP_PKEY_derive_set_peer(3), EVP_PKEY_new_raw_private_key(3) and

EVP_PKEY_new_raw_public_key(3)

+o EVP_SignFinal(3) and EVP_VerifyFinal(3)

+o NCONF_new(3)

+o OCSP_RESPID_match(3) and OCSP_RESPID_set_by_key(3)

+o OPENSSL_thread_stop(3)

+o OSSL_STORE_open(3)

+o PEM_read_bio_Parameters(3), PEM_read_bio_PrivateKey(3), PEM_read_bio_PUBKEY(3),

PEM_read_PrivateKey(3) and PEM_read_PUBKEY(3)

+o PEM_write_bio_PrivateKey(3), PEM_write_bio_PUBKEY(3), PEM_write_PrivateKey(3) and

PEM_write_PUBKEY(3)

+o PEM_X509_INFO_read_bio(3) and PEM_X509_INFO_read(3)

+o PKCS12_add_key(3), PKCS12_add_safe(3), PKCS12_add_safes(3), PKCS12_create(3),

PKCS12_decrypt_skey(3), PKCS12_init(3), PKCS12_item_decrypt_d2i(3),

PKCS12_item_i2d_encrypt(3), PKCS12_key_gen_asc(3), PKCS12_key_gen_uni(3),

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



PKCS12_key_gen_utf8(3), PKCS12_pack_p7encdata(3), PKCS12_pbe_crypt(3),

PKCS12_PBE_keyivgen(3), PKCS12_SAFEBAG_create_pkcs8_encrypt(3)

+o PKCS5_pbe_set0_algor(3), PKCS5_pbe_set(3), PKCS5_pbe2_set_iv(3), PKCS5_pbkdf2_set(3)

and PKCS5_v2_scrypt_keyivgen(3)

+o PKCS7_encrypt(3), PKCS7_new(3) and PKCS7_sign(3)

+o PKCS8_decrypt(3), PKCS8_encrypt(3) and PKCS8_set0_pbe(3)

+o RAND_bytes(3) and RAND_priv_bytes(3)

+o SMIME_write_ASN1(3)

+o SSL_load_client_CA_file(3)

+o SSL_CTX_new(3)

+o TS_RESP_CTX_new(3)

+o X509_CRL_new(3)

+o X509_load_cert_crl_file(3) and X509_load_cert_file(3)

+o X509_LOOKUP_by_subject(3) and X509_LOOKUP_ctrl(3)

+o X509_NAME_hash(3)

+o X509_new(3)

+o X509_REQ_new(3) and X509_REQ_verify(3)

+o X509_STORE_CTX_new(3), X509_STORE_set_default_paths(3), X509_STORE_load_file(3),

X509_STORE_load_locations(3) and X509_STORE_load_store(3)

New functions that use a Library context

The following functions can be passed a library context if required. Passing NULL will use the default

library context.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o BIO_new_from_core_bio(3)

+o EVP_ASYM_CIPHER_fetch(3) and EVP_ASYM_CIPHER_do_all_provided(3)

+o EVP_CIPHER_fetch(3) and EVP_CIPHER_do_all_provided(3)

+o EVP_default_properties_enable_fips(3) and EVP_default_properties_is_fips_enabled(3)

+o EVP_KDF_fetch(3) and EVP_KDF_do_all_provided(3)

+o EVP_KEM_fetch(3) and EVP_KEM_do_all_provided(3)

+o EVP_KEYEXCH_fetch(3) and EVP_KEYEXCH_do_all_provided(3)

+o EVP_KEYMGMT_fetch(3) and EVP_KEYMGMT_do_all_provided(3)

+o EVP_MAC_fetch(3) and EVP_MAC_do_all_provided(3)

+o EVP_MD_fetch(3) and EVP_MD_do_all_provided(3)

+o EVP_PKEY_CTX_new_from_pkey(3)

+o EVP_PKEY_Q_keygen(3)

+o EVP_Q_mac(3) and EVP_Q_digest(3)

+o EVP_RAND(3) and EVP_RAND_do_all_provided(3)

+o EVP_set_default_properties(3)

+o EVP_SIGNATURE_fetch(3) and EVP_SIGNATURE_do_all_provided(3)

+o OSSL_CMP_CTX_new(3) and OSSL_CMP_SRV_CTX_new(3)

+o OSSL_CRMF_ENCRYPTEDVALUE_get1_encCert(3)

+o OSSL_CRMF_MSG_create_popo(3) and OSSL_CRMF_MSGS_verify_popo(3)

+o OSSL_CRMF_pbm_new(3) and OSSL_CRMF_pbmp_new(3)

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o OSSL_DECODER_CTX_add_extra(3) and OSSL_DECODER_CTX_new_for_pkey(3)

+o OSSL_DECODER_fetch(3) and OSSL_DECODER_do_all_provided(3)

+o OSSL_ENCODER_CTX_add_extra(3)

+o OSSL_ENCODER_fetch(3) and OSSL_ENCODER_do_all_provided(3)

+o OSSL_LIB_CTX_free(3), OSSL_LIB_CTX_load_config(3) and

OSSL_LIB_CTX_set0_default(3)

+o OSSL_PROVIDER_add_builtin(3), OSSL_PROVIDER_available(3),

OSSL_PROVIDER_do_all(3), OSSL_PROVIDER_load(3),

OSSL_PROVIDER_set_default_search_path(3) and OSSL_PROVIDER_try_load(3)

+o OSSL_SELF_TEST_get_callback(3) and OSSL_SELF_TEST_set_callback(3)

+o OSSL_STORE_attach(3)

+o OSSL_STORE_LOADER_fetch(3) and OSSL_STORE_LOADER_do_all_provided(3)

+o RAND_get0_primary(3), RAND_get0_private(3), RAND_get0_public(3),

RAND_set_DRBG_type(3) and RAND_set_seed_source_type(3)

Providers

Providers are described in detail here "Providers" in crypto(7). See also "OPENSSL PROVIDERS" in

crypto(7).

Fetching algorithms and property queries

Implicit and Explicit Fetching is described in detail here "ALGORITHM FETCHING" in crypto(7).

Mapping EVP controls and flags to provider OSSL_PARAM(3) parameters

The existing functions for controls (such as EVP_CIPHER_CTX_ctrl(3)) and manipulating flags (such

as EVP_MD_CTX_set_flags(3))internally use OSSL_PARAMS to pass information to/from provider

objects. See OSSL_PARAM(3) for additional information related to parameters.

For ciphers see "CONTROLS" in EVP_EncryptInit(3), "FLAGS" in EVP_EncryptInit(3) and

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



"PARAMETERS" in EVP_EncryptInit(3).

For digests see "CONTROLS" in EVP_DigestInit(3), "FLAGS" in EVP_DigestInit(3) and

"PARAMETERS" in EVP_DigestInit(3).

Deprecation of Low Level Functions

A significant number of APIs have been deprecated in OpenSSL 3.0. This section describes some

common categories of deprecations. See "Deprecated function mappings" for the list of deprecated

functions that refer to these categories.

Providers are a replacement for engines and low-level method overrides

Any accessor that uses an ENGINE is deprecated (such as EVP_PKEY_set1_engine()). Applications

using engines should instead use providers.

Before providers were added algorithms were overridden by changing the methods used by algorithms.

All these methods such as RSA_new_method() and RSA_meth_new() are now deprecated and can be

replaced by using providers instead.

Deprecated i2d and d2i functions for low-level key types

Any i2d and d2i functions such as d2i_DHparams() that take a low-level key type have been

deprecated. Applications should instead use the OSSL_DECODER(3) and OSSL_ENCODER(3) APIs

to read and write files. See "Migration" in d2i_RSAPrivateKey(3) for further details.

Deprecated low-level key object getters and setters

Applications that set or get low-level key objects (such as EVP_PKEY_set1_DH() or

EVP_PKEY_get0()) should instead use the OSSL_ENCODER (See OSSL_ENCODER_to_bio(3)) or

OSSL_DECODER (See OSSL_DECODER_from_bio(3)) APIs, or alternatively use

EVP_PKEY_fromdata(3) or EVP_PKEY_todata(3).

Deprecated low-level key parameter getters

Functions that access low-level objects directly such as RSA_get0_n(3) are now deprecated.

Applications should use one of EVP_PKEY_get_bn_param(3), EVP_PKEY_get_int_param(3),

l<EVP_PKEY_get_size_t_param(3)>, EVP_PKEY_get_utf8_string_param(3),

EVP_PKEY_get_octet_string_param(3) or EVP_PKEY_get_params(3) to access fields from an

EVP_PKEY. Gettable parameters are listed in "Common RSA parameters" in EVP_PKEY-RSA(7),

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



"DH parameters" in EVP_PKEY-DH(7), "DSA parameters" in EVP_PKEY-DSA(7), "FFC

parameters" in EVP_PKEY-FFC(7), "Common EC parameters" in EVP_PKEY-EC(7) and "Common

X25519, X448, ED25519 and ED448 parameters" in EVP_PKEY-X25519(7). Applications may also

use EVP_PKEY_todata(3) to return all fields.

Deprecated low-level key parameter setters

Functions that access low-level objects directly such as RSA_set0_crt_params(3) are now deprecated.

Applications should use EVP_PKEY_fromdata(3) to create new keys from user provided key data.

Keys should be immutable once they are created, so if required the user may use

EVP_PKEY_todata(3), OSSL_PARAM_merge(3), and EVP_PKEY_fromdata(3) to create a modified

key. See "Examples" in EVP_PKEY-DH(7) for more information. See "Deprecated low-level key

generation functions" for information on generating a key using parameters.

Deprecated low-level object creation

Low-level objects were created using methods such as RSA_new(3), RSA_up_ref(3) and RSA_free(3).

Applications should instead use the high-level EVP_PKEY APIs, e.g. EVP_PKEY_new(3),

EVP_PKEY_up_ref(3) and EVP_PKEY_free(3). See also EVP_PKEY_CTX_new_from_name(3) and

EVP_PKEY_CTX_new_from_pkey(3).

EVP_PKEYs may be created in a variety of ways: See also "Deprecated low-level key generation

functions", "Deprecated low-level key reading and writing functions" and "Deprecated low-level key

parameter setters".

Deprecated low-level encryption functions

Low-level encryption functions such as AES_encrypt(3) and AES_decrypt(3) have been informally

discouraged from use for a long time. Applications should instead use the high level EVP APIs

EVP_EncryptInit_ex(3), EVP_EncryptUpdate(3), and EVP_EncryptFinal_ex(3) or

EVP_DecryptInit_ex(3), EVP_DecryptUpdate(3) and EVP_DecryptFinal_ex(3).

Deprecated low-level digest functions

Use of low-level digest functions such as SHA1_Init(3) have been informally discouraged from use for

a long time. Applications should instead use the the high level EVP APIs EVP_DigestInit_ex(3),

EVP_DigestUpdate(3) and EVP_DigestFinal_ex(3), or the quick one-shot EVP_Q_digest(3).

Note that the functions SHA1(3), SHA224(3), SHA256(3), SHA384(3) and SHA512(3) have changed

to macros that use EVP_Q_digest(3).

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



Deprecated low-level signing functions

Use of low-level signing functions such as DSA_sign(3) have been informally discouraged for a long

time. Instead applications should use EVP_DigestSign(3) and EVP_DigestVerify(3). See also

EVP_SIGNATURE-RSA(7), EVP_SIGNATURE-DSA(7), EVP_SIGNATURE-ECDSA(7) and

EVP_SIGNATURE-ED25519(7).

Deprecated low-level MAC functions

Low-level mac functions such as CMAC_Init(3) are deprecated. Applications should instead use the

new EVP_MAC(3) interface, using EVP_MAC_CTX_new(3), EVP_MAC_CTX_free(3),

EVP_MAC_init(3), EVP_MAC_update(3) and EVP_MAC_final(3) or the single-shot MAC function

EVP_Q_mac(3). See EVP_MAC(3), EVP_MAC-HMAC(7), EVP_MAC-CMAC(7),

EVP_MAC-GMAC(7), EVP_MAC-KMAC(7), EVP_MAC-BLAKE2(7), EVP_MAC-Poly1305(7) and

EVP_MAC-Siphash(7) for additional information.

Note that the one-shot method HMAC() is still available for compatibility purposes, but this can also be

replaced by using EVP_Q_MAC if a library context is required.

Deprecated low-level validation functions

Low-level validation functions such as DH_check(3) have been informally discouraged from use for a

long time. Applications should instead use the high-level EVP_PKEY APIs such as

EVP_PKEY_check(3), EVP_PKEY_param_check(3), EVP_PKEY_param_check_quick(3),

EVP_PKEY_public_check(3), EVP_PKEY_public_check_quick(3), EVP_PKEY_private_check(3),

and EVP_PKEY_pairwise_check(3).

Deprecated low-level key exchange functions

Many low-level functions have been informally discouraged from use for a long time. Applications

should instead use EVP_PKEY_derive(3). See EVP_KEYEXCH-DH(7), EVP_KEYEXCH-ECDH(7)

and EVP_KEYEXCH-X25519(7).

Deprecated low-level key generation functions

Many low-level functions have been informally discouraged from use for a long time. Applications

should instead use EVP_PKEY_keygen_init(3) and EVP_PKEY_generate(3) as described in

EVP_PKEY-DSA(7), EVP_PKEY-DH(7), EVP_PKEY-RSA(7), EVP_PKEY-EC(7) and

EVP_PKEY-X25519(7). The ’quick’ one-shot function EVP_PKEY_Q_keygen(3) and macros for the

most common cases: <EVP_RSA_gen(3)> and EVP_EC_gen(3) may also be used.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



Deprecated low-level key reading and writing functions

Use of low-level objects (such as DSA) has been informally discouraged from use for a long time.

Functions to read and write these low-level objects (such as PEM_read_DSA_PUBKEY()) should be

replaced. Applications should instead use OSSL_ENCODER_to_bio(3) and

OSSL_DECODER_from_bio(3).

Deprecated low-level key printing functions

Use of low-level objects (such as DSA) has been informally discouraged from use for a long time.

Functions to print these low-level objects such as DSA_print() should be replaced with the equivalent

EVP_PKEY functions. Application should use one of EVP_PKEY_print_public(3),

EVP_PKEY_print_private(3), EVP_PKEY_print_params(3), EVP_PKEY_print_public_fp(3),

EVP_PKEY_print_private_fp(3) or EVP_PKEY_print_params_fp(3). Note that internally these use

OSSL_ENCODER_to_bio(3) and OSSL_DECODER_from_bio(3).

Deprecated function mappings

The following functions have been deprecated in 3.0.

+o AES_bi_ige_encrypt() and AES_ige_encrypt()

There is no replacement for the IGE functions. New code should not use these modes. These

undocumented functions were never integrated into the EVP layer. They implemented the AES

Infinite Garble Extension (IGE) mode and AES Bi-directional IGE mode. These modes were

never formally standardised and usage of these functions is believed to be very small. In particular

AES_bi_ige_encrypt() has a known bug. It accepts 2 AES keys, but only one is ever used. The

security implications are believed to be minimal, but this issue was never fixed for backwards

compatibility reasons.

+o AES_encrypt(), AES_decrypt(), AES_set_encrypt_key(), AES_set_decrypt_key(),
AES_cbc_encrypt(), AES_cfb128_encrypt(), AES_cfb1_encrypt(), AES_cfb8_encrypt(),
AES_ecb_encrypt(), AES_ofb128_encrypt()

+o AES_unwrap_key(), AES_wrap_key()

See "Deprecated low-level encryption functions"

+o AES_options()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



There is no replacement. It returned a string indicating if the AES code was unrolled.

+o ASN1_digest(), ASN1_sign(), ASN1_verify()

There are no replacements. These old functions are not used, and could be disabled with the macro

NO_ASN1_OLD since OpenSSL 0.9.7.

+o ASN1_STRING_length_set()

Use ASN1_STRING_set(3) or ASN1_STRING_set0(3) instead. This was a potentially unsafe

function that could change the bounds of a previously passed in pointer.

+o BF_encrypt(), BF_decrypt(), BF_set_key(), BF_cbc_encrypt(), BF_cfb64_encrypt(),
BF_ecb_encrypt(), BF_ofb64_encrypt()

See "Deprecated low-level encryption functions". The Blowfish algorithm has been moved to the

Legacy Provider.

+o BF_options()

There is no replacement. This option returned a constant string.

+o BIO_get_callback(), BIO_set_callback(), BIO_debug_callback()

Use the respective non-deprecated _ex() functions.

+o BN_is_prime_ex(), BN_is_prime_fasttest_ex()

Use BN_check_prime(3) which avoids possible misuse and always uses at least 64 rounds of the

Miller-Rabin primality test.

+o BN_pseudo_rand(), BN_pseudo_rand_range()

Use BN_rand(3) and BN_rand_range(3).

+o BN_X931_derive_prime_ex(), BN_X931_generate_prime_ex(), BN_X931_generate_Xpq()

There are no replacements for these low-level functions. They were used internally by

RSA_X931_derive_ex() and RSA_X931_generate_key_ex() which are also deprecated. Use

EVP_PKEY_keygen(3) instead.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o Camellia_encrypt(), Camellia_decrypt(), Camellia_set_key(), Camellia_cbc_encrypt(),
Camellia_cfb128_encrypt(), Camellia_cfb1_encrypt(), Camellia_cfb8_encrypt(),
Camellia_ctr128_encrypt(), Camellia_ecb_encrypt(), Camellia_ofb128_encrypt()

See "Deprecated low-level encryption functions".

+o CAST_encrypt(), CAST_decrypt(), CAST_set_key(), CAST_cbc_encrypt(),
CAST_cfb64_encrypt(), CAST_ecb_encrypt(), CAST_ofb64_encrypt()

See "Deprecated low-level encryption functions". The CAST algorithm has been moved to the

Legacy Provider.

+o CMAC_CTX_new(), CMAC_CTX_cleanup(), CMAC_CTX_copy(), CMAC_CTX_free(),
CMAC_CTX_get0_cipher_ctx()

See "Deprecated low-level MAC functions".

+o CMAC_Init(), CMAC_Update(), CMAC_Final(), CMAC_resume()

See "Deprecated low-level MAC functions".

+o CRYPTO_mem_ctrl(), CRYPTO_mem_debug_free(), CRYPTO_mem_debug_malloc(),
CRYPTO_mem_debug_pop(), CRYPTO_mem_debug_push(), CRYPTO_mem_debug_realloc(),
CRYPTO_mem_leaks(), CRYPTO_mem_leaks_cb(), CRYPTO_mem_leaks_fp(),
CRYPTO_set_mem_debug()

Memory-leak checking has been deprecated in favor of more modern development tools, such as

compiler memory and leak sanitizers or Valgrind.

+o CRYPTO_cts128_encrypt_block(), CRYPTO_cts128_encrypt(),
CRYPTO_cts128_decrypt_block(), CRYPTO_cts128_decrypt(),
CRYPTO_nistcts128_encrypt_block(), CRYPTO_nistcts128_encrypt(),
CRYPTO_nistcts128_decrypt_block(), CRYPTO_nistcts128_decrypt()

Use the higher level functions EVP_CipherInit_ex2(), EVP_CipherUpdate() and

EVP_CipherFinal_ex() instead. See the "cts_mode" parameter in "Gettable and Settable

EVP_CIPHER_CTX parameters" in EVP_EncryptInit(3). See "EXAMPLES" in

EVP_EncryptInit(3) for a AES-256-CBC-CTS example.

+o d2i_DHparams(), d2i_DHxparams(), d2i_DSAparams(), d2i_DSAPrivateKey(),

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



d2i_DSAPrivateKey_bio(), d2i_DSAPrivateKey_fp(), d2i_DSA_PUBKEY(),
d2i_DSA_PUBKEY_bio(), d2i_DSA_PUBKEY_fp(), d2i_DSAPublicKey(),
d2i_ECParameters(), d2i_ECPrivateKey(), d2i_ECPrivateKey_bio(), d2i_ECPrivateKey_fp(),
d2i_EC_PUBKEY(), d2i_EC_PUBKEY_bio(), d2i_EC_PUBKEY_fp(), o2i_ECPublicKey(),
d2i_RSAPrivateKey(), d2i_RSAPrivateKey_bio(), d2i_RSAPrivateKey_fp(),
d2i_RSA_PUBKEY(), d2i_RSA_PUBKEY_bio(), d2i_RSA_PUBKEY_fp(),
d2i_RSAPublicKey(), d2i_RSAPublicKey_bio(), d2i_RSAPublicKey_fp()

See "Deprecated i2d and d2i functions for low-level key types"

+o DES_crypt(), DES_fcrypt(), DES_encrypt1(), DES_encrypt2(), DES_encrypt3(), DES_decrypt3(),
DES_ede3_cbc_encrypt(), DES_ede3_cfb64_encrypt(),
DES_ede3_cfb_encrypt(),DES_ede3_ofb64_encrypt(), DES_ecb_encrypt(), DES_ecb3_encrypt(),
DES_ofb64_encrypt(), DES_ofb_encrypt(), DES_cfb64_encrypt DES_cfb_encrypt(),
DES_cbc_encrypt(), DES_ncbc_encrypt(), DES_pcbc_encrypt(), DES_xcbc_encrypt(),
DES_cbc_cksum(), DES_quad_cksum(), DES_check_key_parity(), DES_is_weak_key(),
DES_key_sched(), DES_options(), DES_random_key(), DES_set_key(),
DES_set_key_checked(), DES_set_key_unchecked(), DES_set_odd_parity(),
DES_string_to_2keys(), DES_string_to_key()

See "Deprecated low-level encryption functions". Algorithms for "DESX-CBC", "DES-ECB",

"DES-CBC", "DES-OFB", "DES-CFB", "DES-CFB1" and "DES-CFB8" have been moved to the

Legacy Provider.

+o DH_bits(), DH_security_bits(), DH_size()

Use EVP_PKEY_get_bits(3), EVP_PKEY_get_security_bits(3) and EVP_PKEY_get_size(3).

+o DH_check(), DH_check_ex(), DH_check_params(), DH_check_params_ex(),
DH_check_pub_key(), DH_check_pub_key_ex()

See "Deprecated low-level validation functions"

+o DH_clear_flags(), DH_test_flags(), DH_set_flags()

The DH_FLAG_CACHE_MONT_P flag has been deprecated without replacement. The

DH_FLAG_TYPE_DH and DH_FLAG_TYPE_DHX have been deprecated. Use

EVP_PKEY_is_a() to determine the type of a key. There is no replacement for setting these flags.

+o DH_compute_key() DH_compute_key_padded()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



See "Deprecated low-level key exchange functions".

+o DH_new(), DH_new_by_nid(), DH_free(), DH_up_ref()

See "Deprecated low-level object creation"

+o DH_generate_key(), DH_generate_parameters_ex()

See "Deprecated low-level key generation functions".

+o DH_get0_pqg(), DH_get0_p(), DH_get0_q(), DH_get0_g(), DH_get0_key(),
DH_get0_priv_key(), DH_get0_pub_key(), DH_get_length(), DH_get_nid()

See "Deprecated low-level key parameter getters"

+o DH_get_1024_160(), DH_get_2048_224(), DH_get_2048_256()

Applications should instead set the OSSL_PKEY_PARAM_GROUP_NAME as specified in "DH

parameters" in EVP_PKEY-DH(7)) to one of "dh_1024_160", "dh_2048_224" or "dh_2048_256"

when generating a DH key.

+o DH_KDF_X9_42()

Applications should use EVP_PKEY_CTX_set_dh_kdf_type(3) instead.

+o DH_get_default_method(), DH_get0_engine(), DH_meth_*(), DH_new_method(),
DH_OpenSSL(), DH_get_ex_data(), DH_set_default_method(), DH_set_method(),
DH_set_ex_data()

See "Providers are a replacement for engines and low-level method overrides"

+o DHparams_print(), DHparams_print_fp()

See "Deprecated low-level key printing functions"

+o DH_set0_key(), DH_set0_pqg(), DH_set_length()

See "Deprecated low-level key parameter setters"

+o DSA_bits(), DSA_security_bits(), DSA_size()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



Use EVP_PKEY_get_bits(3), EVP_PKEY_get_security_bits(3) and EVP_PKEY_get_size(3).

+o DHparams_dup(), DSA_dup_DH()

There is no direct replacement. Applications may use EVP_PKEY_copy_parameters(3) and

EVP_PKEY_dup(3) instead.

+o DSA_generate_key(), DSA_generate_parameters_ex()

See "Deprecated low-level key generation functions".

+o DSA_get0_engine(), DSA_get_default_method(), DSA_get_ex_data(), DSA_get_method(),
DSA_meth_*(), DSA_new_method(), DSA_OpenSSL(), DSA_set_default_method(),
DSA_set_ex_data(), DSA_set_method()

See "Providers are a replacement for engines and low-level method overrides".

+o DSA_get0_p(), DSA_get0_q(), DSA_get0_g(), DSA_get0_pqg(), DSA_get0_key(),
DSA_get0_priv_key(), DSA_get0_pub_key()

See "Deprecated low-level key parameter getters".

+o DSA_new(), DSA_free(), DSA_up_ref()

See "Deprecated low-level object creation"

+o DSAparams_dup()

There is no direct replacement. Applications may use EVP_PKEY_copy_parameters(3) and

EVP_PKEY_dup(3) instead.

+o DSAparams_print(), DSAparams_print_fp(), DSA_print(), DSA_print_fp()

See "Deprecated low-level key printing functions"

+o DSA_set0_key(), DSA_set0_pqg()

See "Deprecated low-level key parameter setters"

+o DSA_set_flags(), DSA_clear_flags(), DSA_test_flags()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



The DSA_FLAG_CACHE_MONT_P flag has been deprecated without replacement.

+o DSA_sign(), DSA_do_sign(), DSA_sign_setup(), DSA_verify(), DSA_do_verify()

See "Deprecated low-level signing functions".

+o ECDH_compute_key()

See "Deprecated low-level key exchange functions".

+o ECDH_KDF_X9_62()

Applications may either set this using the helper function

EVP_PKEY_CTX_set_ecdh_kdf_type(3) or by setting an OSSL_PARAM(3) using the "kdf-type"

as shown in "EXAMPLES" in EVP_KEYEXCH-ECDH(7)

+o ECDSA_sign(), ECDSA_sign_ex(), ECDSA_sign_setup(), ECDSA_do_sign(),
ECDSA_do_sign_ex(), ECDSA_verify(), ECDSA_do_verify()

See "Deprecated low-level signing functions".

+o ECDSA_size()

Applications should use EVP_PKEY_get_size(3).

+o EC_GF2m_simple_method(), EC_GFp_mont_method(), EC_GFp_nist_method(),
EC_GFp_nistp224_method(), EC_GFp_nistp256_method(), EC_GFp_nistp521_method(),
EC_GFp_simple_method()

There are no replacements for these functions. Applications should rely on the library

automatically assigning a suitable method internally when an EC_GROUP is constructed.

+o EC_GROUP_clear_free()

Use EC_GROUP_free(3) instead.

+o EC_GROUP_get_curve_GF2m(), EC_GROUP_get_curve_GFp(),
EC_GROUP_set_curve_GF2m(), EC_GROUP_set_curve_GFp()

Applications should use EC_GROUP_get_curve(3) and EC_GROUP_set_curve(3).

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o EC_GROUP_have_precompute_mult(), EC_GROUP_precompute_mult(),
EC_KEY_precompute_mult()

These functions are not widely used. Applications should instead switch to named curves which

OpenSSL has hardcoded lookup tables for.

+o EC_GROUP_new(), EC_GROUP_method_of(), EC_POINT_method_of()

EC_METHOD is now an internal-only concept and a suitable EC_METHOD is assigned

internally without application intervention. Users of EC_GROUP_new() should switch to a

different suitable constructor.

+o EC_KEY_can_sign()

Applications should use EVP_PKEY_can_sign(3) instead.

+o EC_KEY_check_key()

See "Deprecated low-level validation functions"

+o EC_KEY_set_flags(), EC_KEY_get_flags(), EC_KEY_clear_flags()

See "Common EC parameters" in EVP_PKEY-EC(7) which handles flags as separate parameters

for OSSL_PKEY_PARAM_EC_POINT_CONVERSION_FORMAT,

OSSL_PKEY_PARAM_EC_GROUP_CHECK_TYPE,

OSSL_PKEY_PARAM_EC_ENCODING, OSSL_PKEY_PARAM_USE_COFACTOR_ECDH
and OSSL_PKEY_PARAM_EC_INCLUDE_PUBLIC. See also "EXAMPLES" in

EVP_PKEY-EC(7)

+o EC_KEY_dup(), EC_KEY_copy()

There is no direct replacement. Applications may use EVP_PKEY_copy_parameters(3) and

EVP_PKEY_dup(3) instead.

+o EC_KEY_decoded_from_explicit_params()

There is no replacement.

+o EC_KEY_generate_key()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



See "Deprecated low-level key generation functions".

+o EC_KEY_get0_group(), EC_KEY_get0_private_key(), EC_KEY_get0_public_key(),
EC_KEY_get_conv_form(), EC_KEY_get_enc_flags()

See "Deprecated low-level key parameter getters".

+o EC_KEY_get0_engine(), EC_KEY_get_default_method(), EC_KEY_get_method(),
EC_KEY_new_method(), EC_KEY_get_ex_data(), EC_KEY_OpenSSL(),
EC_KEY_set_ex_data(), EC_KEY_set_default_method(), EC_KEY_METHOD_*(),

EC_KEY_set_method()

See "Providers are a replacement for engines and low-level method overrides"

+o EC_METHOD_get_field_type()

Use EC_GROUP_get_field_type(3) instead. See "Providers are a replacement for engines and

low-level method overrides"

+o EC_KEY_key2buf(), EC_KEY_oct2key(), EC_KEY_oct2priv(), EC_KEY_priv2buf(),
EC_KEY_priv2oct()

There are no replacements for these.

+o EC_KEY_new(), EC_KEY_new_by_curve_name(), EC_KEY_free(), EC_KEY_up_ref()

See "Deprecated low-level object creation"

+o EC_KEY_print(), EC_KEY_print_fp()

See "Deprecated low-level key printing functions"

+o EC_KEY_set_asn1_flag(), EC_KEY_set_conv_form(), EC_KEY_set_enc_flags()

See "Deprecated low-level key parameter setters".

+o EC_KEY_set_group(), EC_KEY_set_private_key(), EC_KEY_set_public_key(),
EC_KEY_set_public_key_affine_coordinates()

See "Deprecated low-level key parameter setters".

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o ECParameters_print(), ECParameters_print_fp(), ECPKParameters_print(),
ECPKParameters_print_fp()

See "Deprecated low-level key printing functions"

+o EC_POINT_bn2point(), EC_POINT_point2bn()

These functions were not particularly useful, since EC point serialization formats are not

individual big-endian integers.

+o EC_POINT_get_affine_coordinates_GF2m(), EC_POINT_get_affine_coordinates_GFp(),
EC_POINT_set_affine_coordinates_GF2m(), EC_POINT_set_affine_coordinates_GFp()

Applications should use EC_POINT_get_affine_coordinates(3) and

EC_POINT_set_affine_coordinates(3) instead.

+o EC_POINT_get_Jprojective_coordinates_GFp(), EC_POINT_set_Jprojective_coordinates_GFp()

These functions are not widely used. Applications should instead use the

EC_POINT_set_affine_coordinates(3) and EC_POINT_get_affine_coordinates(3) functions.

+o EC_POINT_make_affine(), EC_POINTs_make_affine()

There is no replacement. These functions were not widely used, and OpenSSL automatically

performs this conversion when needed.

+o EC_POINT_set_compressed_coordinates_GF2m(),
EC_POINT_set_compressed_coordinates_GFp()

Applications should use EC_POINT_set_compressed_coordinates(3) instead.

+o EC_POINTs_mul()

This function is not widely used. Applications should instead use the EC_POINT_mul(3)

function.

+o ENGINE_*()

All engine functions are deprecated. An engine should be rewritten as a provider. See "Providers

are a replacement for engines and low-level method overrides".

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o ERR_load_*(), ERR_func_error_string(), ERR_get_error_line(), ERR_get_error_line_data(),
ERR_get_state()

OpenSSL now loads error strings automatically so these functions are not needed.

+o ERR_peek_error_line_data(), ERR_peek_last_error_line_data()

The new functions are ERR_peek_error_func(3), ERR_peek_last_error_func(3),

ERR_peek_error_data(3), ERR_peek_last_error_data(3), ERR_get_error_all(3),

ERR_peek_error_all(3) and ERR_peek_last_error_all(3). Applications should use

ERR_get_error_all(3), or pick information with ERR_peek functions and finish off with getting

the error code by using ERR_get_error(3).

+o EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_iv_noconst(), EVP_CIPHER_CTX_original_iv()

Applications should instead use EVP_CIPHER_CTX_get_updated_iv(3),

EVP_CIPHER_CTX_get_updated_iv(3) and EVP_CIPHER_CTX_get_original_iv(3)

respectively. See EVP_CIPHER_CTX_get_original_iv(3) for further information.

+o EVP_CIPHER_meth_*(), EVP_MD_CTX_set_update_fn(), EVP_MD_CTX_update_fn(),
EVP_MD_meth_*()

See "Providers are a replacement for engines and low-level method overrides".

+o EVP_PKEY_CTRL_PKCS7_ENCRYPT(), EVP_PKEY_CTRL_PKCS7_DECRYPT(),
EVP_PKEY_CTRL_PKCS7_SIGN(), EVP_PKEY_CTRL_CMS_ENCRYPT(),
EVP_PKEY_CTRL_CMS_DECRYPT(), and EVP_PKEY_CTRL_CMS_SIGN()

These control operations are not invoked by the OpenSSL library anymore and are replaced by

direct checks of the key operation against the key type when the operation is initialized.

+o EVP_PKEY_CTX_get0_dh_kdf_ukm(), EVP_PKEY_CTX_get0_ecdh_kdf_ukm()

See the "kdf-ukm" item in "DH key exchange parameters" in EVP_KEYEXCH-DH(7) and

"ECDH Key Exchange parameters" in EVP_KEYEXCH-ECDH(7). These functions are obsolete

and should not be required.

+o EVP_PKEY_CTX_set_rsa_keygen_pubexp()

Applications should use EVP_PKEY_CTX_set1_rsa_keygen_pubexp(3) instead.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o EVP_PKEY_cmp(), EVP_PKEY_cmp_parameters()

Applications should use EVP_PKEY_eq(3) and EVP_PKEY_parameters_eq(3) instead. See

EVP_PKEY_copy_parameters(3) for further details.

+o EVP_PKEY_encrypt_old(), EVP_PKEY_decrypt_old(),

Applications should use EVP_PKEY_encrypt_init(3) and EVP_PKEY_encrypt(3) or

EVP_PKEY_decrypt_init(3) and EVP_PKEY_decrypt(3) instead.

+o EVP_PKEY_get0()

This function returns NULL if the key comes from a provider.

+o EVP_PKEY_get0_DH(), EVP_PKEY_get0_DSA(), EVP_PKEY_get0_EC_KEY(),
EVP_PKEY_get0_RSA(), EVP_PKEY_get1_DH(), EVP_PKEY_get1_DSA(),
EVP_PKEY_get1_EC_KEY and EVP_PKEY_get1_RSA(), EVP_PKEY_get0_hmac(),
EVP_PKEY_get0_poly1305(), EVP_PKEY_get0_siphash()

See "Functions that return an internal key should be treated as read only".

+o EVP_PKEY_meth_*()

See "Providers are a replacement for engines and low-level method overrides".

+o EVP_PKEY_new_CMAC_key()

See "Deprecated low-level MAC functions".

+o EVP_PKEY_assign(), EVP_PKEY_set1_DH(), EVP_PKEY_set1_DSA(),
EVP_PKEY_set1_EC_KEY(), EVP_PKEY_set1_RSA()

See "Deprecated low-level key object getters and setters"

+o EVP_PKEY_set1_tls_encodedpoint() EVP_PKEY_get1_tls_encodedpoint()

These functions were previously used by libssl to set or get an encoded public key into/from an

EVP_PKEY object. With OpenSSL 3.0 these are replaced by the more generic functions

EVP_PKEY_set1_encoded_public_key(3) and EVP_PKEY_get1_encoded_public_key(3). The

old versions have been converted to deprecated macros that just call the new functions.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o EVP_PKEY_set1_engine(), EVP_PKEY_get0_engine()

See "Providers are a replacement for engines and low-level method overrides".

+o EVP_PKEY_set_alias_type()

This function has been removed. There is no replacement. See "EVP_PKEY_set_alias_type()
method has been removed"

+o HMAC_Init_ex(), HMAC_Update(), HMAC_Final(), HMAC_size()

See "Deprecated low-level MAC functions".

+o HMAC_CTX_new(), HMAC_CTX_free(), HMAC_CTX_copy(), HMAC_CTX_reset(),
HMAC_CTX_set_flags(), HMAC_CTX_get_md()

See "Deprecated low-level MAC functions".

+o i2d_DHparams(), i2d_DHxparams()

See "Deprecated low-level key reading and writing functions" and "Migration" in

d2i_RSAPrivateKey(3)

+o i2d_DSAparams(), i2d_DSAPrivateKey(), i2d_DSAPrivateKey_bio(), i2d_DSAPrivateKey_fp(),
i2d_DSA_PUBKEY(), i2d_DSA_PUBKEY_bio(), i2d_DSA_PUBKEY_fp(),
i2d_DSAPublicKey()

See "Deprecated low-level key reading and writing functions" and "Migration" in

d2i_RSAPrivateKey(3)

+o i2d_ECParameters(), i2d_ECPrivateKey(), i2d_ECPrivateKey_bio(), i2d_ECPrivateKey_fp(),
i2d_EC_PUBKEY(), i2d_EC_PUBKEY_bio(), i2d_EC_PUBKEY_fp(), i2o_ECPublicKey()

See "Deprecated low-level key reading and writing functions" and "Migration" in

d2i_RSAPrivateKey(3)

+o i2d_RSAPrivateKey(), i2d_RSAPrivateKey_bio(), i2d_RSAPrivateKey_fp(),
i2d_RSA_PUBKEY(), i2d_RSA_PUBKEY_bio(), i2d_RSA_PUBKEY_fp(),
i2d_RSAPublicKey(), i2d_RSAPublicKey_bio(), i2d_RSAPublicKey_fp()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



See "Deprecated low-level key reading and writing functions" and "Migration" in

d2i_RSAPrivateKey(3)

+o IDEA_encrypt(), IDEA_set_decrypt_key(), IDEA_set_encrypt_key(), IDEA_cbc_encrypt(),
IDEA_cfb64_encrypt(), IDEA_ecb_encrypt(), IDEA_ofb64_encrypt()

See "Deprecated low-level encryption functions". IDEA has been moved to the Legacy Provider.

+o IDEA_options()

There is no replacement. This function returned a constant string.

+o MD2(), MD2_Init(), MD2_Update(), MD2_Final()

See "Deprecated low-level encryption functions". MD2 has been moved to the Legacy Provider.

+o MD2_options()

There is no replacement. This function returned a constant string.

+o MD4(), MD4_Init(), MD4_Update(), MD4_Final(), MD4_Transform()

See "Deprecated low-level encryption functions". MD4 has been moved to the Legacy Provider.

+o MDC2(), MDC2_Init(), MDC2_Update(), MDC2_Final()

See "Deprecated low-level encryption functions". MDC2 has been moved to the Legacy Provider.

+o MD5(), MD5_Init(), MD5_Update(), MD5_Final(), MD5_Transform()

See "Deprecated low-level encryption functions".

+o NCONF_WIN32()

This undocumented function has no replacement. See "HISTORY" in config(5) for more details.

+o OCSP_parse_url()

Use OSSL_HTTP_parse_url(3) instead.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o OCSP_REQ_CTX type and OCSP_REQ_CTX_*() functions

These methods were used to collect all necessary data to form a HTTP request, and to perform the

HTTP transfer with that request. With OpenSSL 3.0, the type is OSSL_HTTP_REQ_CTX, and

the deprecated functions are replaced with OSSL_HTTP_REQ_CTX_*(). See

OSSL_HTTP_REQ_CTX(3) for additional details.

+o OPENSSL_fork_child(), OPENSSL_fork_parent(), OPENSSL_fork_prepare()

There is no replacement for these functions. These pthread fork support methods were unused by

OpenSSL.

+o OSSL_STORE_ctrl(), OSSL_STORE_do_all_loaders(),
OSSL_STORE_LOADER_get0_engine(), OSSL_STORE_LOADER_get0_scheme(),
OSSL_STORE_LOADER_new(), OSSL_STORE_LOADER_set_attach(),
OSSL_STORE_LOADER_set_close(), OSSL_STORE_LOADER_set_ctrl(),
OSSL_STORE_LOADER_set_eof(), OSSL_STORE_LOADER_set_error(),
OSSL_STORE_LOADER_set_expect(), OSSL_STORE_LOADER_set_find(),
OSSL_STORE_LOADER_set_load(), OSSL_STORE_LOADER_set_open(),
OSSL_STORE_LOADER_set_open_ex(), OSSL_STORE_register_loader(),
OSSL_STORE_unregister_loader(), OSSL_STORE_vctrl()

These functions helped applications and engines create loaders for schemes they supported. These

are all deprecated and discouraged in favour of provider implementations, see

provider-storemgmt(7).

+o PEM_read_DHparams(), PEM_read_bio_DHparams(), PEM_read_DSAparams(),
PEM_read_bio_DSAparams(), PEM_read_DSAPrivateKey(), PEM_read_DSA_PUBKEY(),
PEM_read_bio_DSAPrivateKey and PEM_read_bio_DSA_PUBKEY(),
PEM_read_ECPKParameters(), PEM_read_ECPrivateKey(), PEM_read_EC_PUBKEY(),
PEM_read_bio_ECPKParameters(), PEM_read_bio_ECPrivateKey(),
PEM_read_bio_EC_PUBKEY(), PEM_read_RSAPrivateKey(), PEM_read_RSA_PUBKEY(),
PEM_read_RSAPublicKey(), PEM_read_bio_RSAPrivateKey(),
PEM_read_bio_RSA_PUBKEY(), PEM_read_bio_RSAPublicKey(),
PEM_write_bio_DHparams(), PEM_write_bio_DHxparams(), PEM_write_DHparams(),
PEM_write_DHxparams(), PEM_write_DSAparams(), PEM_write_DSAPrivateKey(),
PEM_write_DSA_PUBKEY(), PEM_write_bio_DSAparams(),
PEM_write_bio_DSAPrivateKey(), PEM_write_bio_DSA_PUBKEY(),
PEM_write_ECPKParameters(), PEM_write_ECPrivateKey(), PEM_write_EC_PUBKEY(),
PEM_write_bio_ECPKParameters(), PEM_write_bio_ECPrivateKey(),

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



PEM_write_bio_EC_PUBKEY(), PEM_write_RSAPrivateKey(), PEM_write_RSA_PUBKEY(),
PEM_write_RSAPublicKey(), PEM_write_bio_RSAPrivateKey(),
PEM_write_bio_RSA_PUBKEY(), PEM_write_bio_RSAPublicKey(),

See "Deprecated low-level key reading and writing functions"

+o PKCS1_MGF1()

See "Deprecated low-level encryption functions".

+o RAND_get_rand_method(), RAND_set_rand_method(), RAND_OpenSSL(),
RAND_set_rand_engine()

Applications should instead use RAND_set_DRBG_type(3), EVP_RAND(3) and EVP_RAND(7).

See RAND_set_rand_method(3) for more details.

+o RC2_encrypt(), RC2_decrypt(), RC2_set_key(), RC2_cbc_encrypt(), RC2_cfb64_encrypt(),
RC2_ecb_encrypt(), RC2_ofb64_encrypt(), RC4(), RC4_set_key(), RC4_options(),
RC5_32_encrypt(), RC5_32_set_key(), RC5_32_decrypt(), RC5_32_cbc_encrypt(),
RC5_32_cfb64_encrypt(), RC5_32_ecb_encrypt(), RC5_32_ofb64_encrypt()

See "Deprecated low-level encryption functions". The Algorithms "RC2", "RC4" and "RC5" have

been moved to the Legacy Provider.

+o RIPEMD160(), RIPEMD160_Init(), RIPEMD160_Update(), RIPEMD160_Final(),
RIPEMD160_Transform()

See "Deprecated low-level digest functions". The RIPE algorithm has been moved to the Legacy

Provider.

+o RSA_bits(), RSA_security_bits(), RSA_size()

Use EVP_PKEY_get_bits(3), EVP_PKEY_get_security_bits(3) and EVP_PKEY_get_size(3).

+o RSA_check_key(), RSA_check_key_ex()

See "Deprecated low-level validation functions"

+o RSA_clear_flags(), RSA_flags(), RSA_set_flags(), RSA_test_flags(), RSA_setup_blinding(),
RSA_blinding_off(), RSA_blinding_on()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



All of these RSA flags have been deprecated without replacement:

RSA_FLAG_BLINDING, RSA_FLAG_CACHE_PRIVATE, RSA_FLAG_CACHE_PUBLIC,

RSA_FLAG_EXT_PKEY, RSA_FLAG_NO_BLINDING, RSA_FLAG_THREAD_SAFE
RSA_METHOD_FLAG_NO_CHECK

+o RSA_generate_key_ex(), RSA_generate_multi_prime_key()

See "Deprecated low-level key generation functions".

+o RSA_get0_engine()

See "Providers are a replacement for engines and low-level method overrides"

+o RSA_get0_crt_params(), RSA_get0_d(), RSA_get0_dmp1(), RSA_get0_dmq1(), RSA_get0_e(),
RSA_get0_factors(), RSA_get0_iqmp(), RSA_get0_key(), RSA_get0_multi_prime_crt_params(),
RSA_get0_multi_prime_factors(), RSA_get0_n(), RSA_get0_p(), RSA_get0_pss_params(),
RSA_get0_q(), RSA_get_multi_prime_extra_count()

See "Deprecated low-level key parameter getters"

+o RSA_new(), RSA_free(), RSA_up_ref()

See "Deprecated low-level object creation".

+o RSA_get_default_method(), RSA_get_ex_data and RSA_get_method()

See "Providers are a replacement for engines and low-level method overrides".

+o RSA_get_version()

There is no replacement.

+o RSA_meth_*(), RSA_new_method(), RSA_null_method and RSA_PKCS1_OpenSSL()

See "Providers are a replacement for engines and low-level method overrides".

+o RSA_padding_add_*(), RSA_padding_check_*()

See "Deprecated low-level signing functions" and "Deprecated low-level encryption functions".

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o RSA_print(), RSA_print_fp()

See "Deprecated low-level key printing functions"

+o RSA_public_encrypt(), RSA_private_decrypt()

See "Deprecated low-level encryption functions"

+o RSA_private_encrypt(), RSA_public_decrypt()

This is equivalent to doing sign and verify recover operations (with a padding mode of none). See

"Deprecated low-level signing functions".

+o RSAPrivateKey_dup(), RSAPublicKey_dup()

There is no direct replacement. Applications may use EVP_PKEY_dup(3).

+o RSAPublicKey_it(), RSAPrivateKey_it()

See "Deprecated low-level key reading and writing functions"

+o RSA_set0_crt_params(), RSA_set0_factors(), RSA_set0_key(), RSA_set0_multi_prime_params()

See "Deprecated low-level key parameter setters".

+o RSA_set_default_method(), RSA_set_method(), RSA_set_ex_data()

See "Providers are a replacement for engines and low-level method overrides"

+o RSA_sign(), RSA_sign_ASN1_OCTET_STRING(), RSA_verify(),
RSA_verify_ASN1_OCTET_STRING(), RSA_verify_PKCS1_PSS(),
RSA_verify_PKCS1_PSS_mgf1()

See "Deprecated low-level signing functions".

+o RSA_X931_derive_ex(), RSA_X931_generate_key_ex(), RSA_X931_hash_id()

There are no replacements for these functions. X931 padding can be set using "Signature

Parameters" in EVP_SIGNATURE-RSA(7). See OSSL_SIGNATURE_PARAM_PAD_MODE.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



+o SEED_encrypt(), SEED_decrypt(), SEED_set_key(), SEED_cbc_encrypt(),
SEED_cfb128_encrypt(), SEED_ecb_encrypt(), SEED_ofb128_encrypt()

See "Deprecated low-level encryption functions". The SEED algorithm has been moved to the

Legacy Provider.

+o SHA1_Init(), SHA1_Update(), SHA1_Final(), SHA1_Transform(), SHA224_Init(),
SHA224_Update(), SHA224_Final(), SHA256_Init(), SHA256_Update(), SHA256_Final(),
SHA256_Transform(), SHA384_Init(), SHA384_Update(), SHA384_Final(), SHA512_Init(),
SHA512_Update(), SHA512_Final(), SHA512_Transform()

See "Deprecated low-level digest functions".

+o SRP_Calc_A(), SRP_Calc_B(), SRP_Calc_client_key(), SRP_Calc_server_key(), SRP_Calc_u(),
SRP_Calc_x(), SRP_check_known_gN_param(), SRP_create_verifier(),
SRP_create_verifier_BN(), SRP_get_default_gN(), SRP_user_pwd_free(), SRP_user_pwd_new(),
SRP_user_pwd_set0_sv(), SRP_user_pwd_set1_ids(), SRP_user_pwd_set_gN(),
SRP_VBASE_add0_user(), SRP_VBASE_free(), SRP_VBASE_get1_by_user(),
SRP_VBASE_init(), SRP_VBASE_new(), SRP_Verify_A_mod_N(), SRP_Verify_B_mod_N()

There are no replacements for the SRP functions.

+o SSL_CTX_set_tmp_dh_callback(), SSL_set_tmp_dh_callback(), SSL_CTX_set_tmp_dh(),
SSL_set_tmp_dh()

These are used to set the Diffie-Hellman (DH) parameters that are to be used by servers requiring

ephemeral DH keys. Instead applications should consider using the built-in DH parameters that

are available by calling SSL_CTX_set_dh_auto(3) or SSL_set_dh_auto(3). If custom parameters

are necessary then applications can use the alternative functions SSL_CTX_set0_tmp_dh_pkey(3)

and SSL_set0_tmp_dh_pkey(3). There is no direct replacement for the "callback" functions. The

callback was originally useful in order to have different parameters for export and non-export

ciphersuites. Export ciphersuites are no longer supported by OpenSSL. Use of the callback

functions should be replaced by one of the other methods described above.

+o SSL_CTX_set_tlsext_ticket_key_cb()

Use the new SSL_CTX_set_tlsext_ticket_key_evp_cb(3) function instead.

+o WHIRLPOOL(), WHIRLPOOL_Init(), WHIRLPOOL_Update(), WHIRLPOOL_Final(),
WHIRLPOOL_BitUpdate()

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



See "Deprecated low-level digest functions". The Whirlpool algorithm has been moved to the

Legacy Provider.

+o X509_certificate_type()

This was an undocumented function. Applications can use X509_get0_pubkey(3) and

X509_get0_signature(3) instead.

+o X509_http_nbio(), X509_CRL_http_nbio()

Use X509_load_http(3) and X509_CRL_load_http(3) instead.

NID handling for provided keys and algorithms

The following functions for NID (numeric id) handling have changed semantics.

+o EVP_PKEY_id(), EVP_PKEY_get_id()

This function was previously used to reliably return the NID of an EVP_PKEY object, e.g., to

look up the name of the algorithm of such EVP_PKEY by calling OBJ_nid2sn(3). With the

introduction of provider(7)s EVP_PKEY_id() or its new equivalent EVP_PKEY_get_id(3) might

now also return the value -1 (EVP_PKEY_KEYMGMT) indicating the use of a provider to

implement the EVP_PKEY object. Therefore, the use of EVP_PKEY_get0_type_name(3) is

recommended for retrieving the name of the EVP_PKEY algorithm.

Using the FIPS Module in applications
See fips_module(7) and OSSL_PROVIDER-FIPS(7) for details.

OpenSSL command line application changes
New applications

openssl kdf uses the new EVP_KDF(3) API. openssl kdf uses the new EVP_MAC(3) API.

Added options

-provider_path and -provider are available to all apps and can be used multiple times to load any

providers, such as the ’legacy’ provider or third party providers. If used then the ’default’ provider

would also need to be specified if required. The -provider_path must be specified before the -provider
option.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



The list app has many new options. See openssl-list(1) for more information.

-crl_lastupdate and -crl_nextupdate used by openssl ca allows explicit setting of fields in the generated

CRL.

Removed options

Interactive mode is not longer available.

The -crypt option used by openssl passwd. The -c option used by openssl x509, openssl dhparam,

openssl dsaparam, and openssl ecparam.

Other Changes

The output of Command line applications may have minor changes. These are primarily changes in

capitalisation and white space. However, in some cases, there are additional differences. For example,

the DH parameters output from openssl dhparam now lists ’P’, ’Q’, ’G’ and ’pcounter’ instead of

’prime’, ’generator’, ’subgroup order’ and ’counter’ respectively.

The openssl commands that read keys, certificates, and CRLs now automatically detect the PEM or

DER format of the input files so it is not necessary to explicitly specify the input format anymore.

However if the input format option is used the specified format will be required.

openssl speed no longer uses low-level API calls. This implies some of the performance numbers

might not be comparable with the previous releases due to higher overhead. This applies particularly to

measuring performance on smaller data chunks.

b<openssl dhparam>, openssl dsa, openssl gendsa, openssl dsaparam, openssl genrsa and openssl rsa
have been modified to use PKEY APIs. openssl genrsa and openssl rsa now write PKCS #8 keys by

default.

Default settings

"SHA256" is now the default digest for TS query used by openssl ts.

Deprecated apps

openssl rsautl is deprecated, use openssl pkeyutl instead. openssl dhparam, openssl dsa, openssl
gendsa, openssl dsaparam, openssl genrsa, openssl rsa, openssl genrsa and openssl rsa are now in

maintenance mode and no new features will be added to them.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



TLS Changes
+o TLS 1.3 FFDHE key exchange support added

This uses DH safe prime named groups.

+o Support for fully "pluggable" TLSv1.3 groups.

This means that providers may supply their own group implementations (using either the "key

exchange" or the "key encapsulation" methods) which will automatically be detected and used by

libssl.

+o SSL and SSL_CTX options are now 64 bit instead of 32 bit.

The signatures of the functions to get and set options on SSL and SSL_CTX objects changed from

"unsigned long" to "uint64_t" type.

This may require source code changes. For example it is no longer possible to use the SSL_OP_

macro values in preprocessor "#if" conditions. However it is still possible to test whether these

macros are defined or not.

See SSL_CTX_get_options(3), SSL_CTX_set_options(3), SSL_get_options(3) and

SSL_set_options(3).

+o SSL_set1_host() and SSL_add1_host() Changes

These functions now take IP literal addresses as well as actual hostnames.

+o Added SSL option SSL_OP_CLEANSE_PLAINTEXT

If the option is set, openssl cleanses (zeroizes) plaintext bytes from internal buffers after

delivering them to the application. Note, the application is still responsible for cleansing other

copies (e.g.: data received by SSL_read(3)).

+o Client-initiated renegotiation is disabled by default.

To allow it, use the -client_renegotiation option, the

SSL_OP_ALLOW_CLIENT_RENEGOTIATION flag, or the "ClientRenegotiation" config

parameter as appropriate.

+o Secure renegotiation is now required by default for TLS connections

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



Support for RFC 5746 secure renegotiation is now required by default for SSL or TLS

connections to succeed. Applications that require the ability to connect to legacy peers will need

to explicitly set SSL_OP_LEGACY_SERVER_CONNECT. Accordingly,

SSL_OP_LEGACY_SERVER_CONNECT is no longer set as part of SSL_OP_ALL.

+o Combining the Configure options no-ec and no-dh no longer disables TLSv1.3

Typically if OpenSSL has no EC or DH algorithms then it cannot support connections with

TLSv1.3. However OpenSSL now supports "pluggable" groups through providers. Therefore third

party providers may supply group implementations even where there are no built-in ones.

Attempting to create TLS connections in such a build without also disabling TLSv1.3 at run time

or using third party provider groups may result in handshake failures. TLSv1.3 can be disabled at

compile time using the "no-tls1_3" Configure option.

+o SSL_CTX_set_ciphersuites() and SSL_set_ciphersuites() changes.

The methods now ignore unknown ciphers.

+o Security callback change.

The security callback, which can be customised by application code, supports the security

operation SSL_SECOP_TMP_DH. This is defined to take an EVP_PKEY in the "other"

parameter. In most places this is what is passed. All these places occur server side. However there

was one client side call of this security operation and it passed a DH object instead. This is

incorrect according to the definition of SSL_SECOP_TMP_DH, and is inconsistent with all of the

other locations. Therefore this client side call has been changed to pass an EVP_PKEY instead.

+o New SSL option SSL_OP_IGNORE_UNEXPECTED_EOF

The SSL option SSL_OP_IGNORE_UNEXPECTED_EOF is introduced. If that option is set, an

unexpected EOF is ignored, it pretends a close notify was received instead and so the returned

error becomes SSL_ERROR_ZERO_RETURN.

+o The security strength of SHA1 and MD5 based signatures in TLS has been reduced.

This results in SSL 3, TLS 1.0, TLS 1.1 and DTLS 1.0 no longer working at the default security

level of 1 and instead requires security level 0. The security level can be changed either using the

cipher string with @SECLEVEL, or calling SSL_CTX_set_security_level(3). This also means

that where the signature algorithms extension is missing from a ClientHello then the handshake

will fail in TLS 1.2 at security level 1. This is because, although this extension is optional, failing

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)



to provide one means that OpenSSL will fallback to a default set of signature algorithms. This

default set requires the availability of SHA1.

+o X509 certificates signed using SHA1 are no longer allowed at security level 1 and above.

In TLS/SSL the default security level is 1. It can be set either using the cipher string with

@SECLEVEL, or calling SSL_CTX_set_security_level(3). If the leaf certificate is signed with

SHA-1, a call to SSL_CTX_use_certificate(3) will fail if the security level is not lowered first.

Outside TLS/SSL, the default security level is -1 (effectively 0). It can be set using

X509_VERIFY_PARAM_set_auth_level(3) or using the -auth_level options of the commands.

SEE ALSO
fips_module(7)

HISTORY
The migration guide was created for OpenSSL 3.0.

COPYRIGHT
Copyright 2021-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

MIGRATION_GUIDE(7ossl) OpenSSL MIGRATION_GUIDE(7ossl)

3.0.11 2023-09-19 MIGRATION_GUIDE(7ossl)


