
NAME
mknod, mknodat - make a special file node

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int

mknod(const char *path, mode_t mode, dev_t dev);

int

mknodat(int fd, const char *path, mode_t mode, dev_t dev);

DESCRIPTION
The file system node path is created with the file type and access permissions specified in mode. The

access permissions are modified by the process’s umask value.

If mode indicates a block or character special file, dev is a configuration dependent specification

denoting a particular device on the system. Otherwise, dev is ignored.

The mknod() system call requires super-user privileges.

The mknodat() system call is equivalent to mknod() except in the case where path specifies a relative

path. In this case the newly created device node is created relative to the directory associated with the

file descriptor fd instead of the current working directory. If mknodat() is passed the special value

AT_FDCWD in the fd parameter, the current working directory is used and the behavior is identical to a

call to mknod().

RETURN VALUES
The mknod() function returns the value 0 if successful; otherwise the value -1 is returned and the global

variable errno is set to indicate the error.

ERRORS
The mknod() system call will fail and the file will be not created if:

[ENOTDIR] A component of the path prefix is not a directory.

[ENAMETOOLONG]

MKNOD(2) FreeBSD System Calls Manual MKNOD(2)

FreeBSD 14.0-RELEASE-p11 March 30, 2020 FreeBSD 14.0-RELEASE-p11



A component of a pathname exceeded 255 characters, or an entire path name

exceeded 1023 characters.

[ENOENT] A component of the path prefix does not exist.

[EACCES] Search permission is denied for a component of the path prefix.

[ELOOP] Too many symbolic links were encountered in translating the pathname.

[EPERM] The process’s effective user ID is not super-user.

[EIO] An I/O error occurred while making the directory entry or allocating the inode.

[EINTEGRITY] Corrupted data was detected while reading from the file system.

[ENOSPC] The directory in which the entry for the new node is being placed cannot be

extended because there is no space left on the file system containing the directory.

[ENOSPC] There are no free inodes on the file system on which the node is being created.

[EDQUOT] The directory in which the entry for the new node is being placed cannot be

extended because the user’s quota of disk blocks on the file system containing the

directory has been exhausted.

[EDQUOT] The user’s quota of inodes on the file system on which the node is being created

has been exhausted.

[EROFS] The named file resides on a read-only file system.

[EEXIST] The named file exists.

[EFAULT] The path argument points outside the process’s allocated address space.

[EINVAL] Creating anything else than a block or character special file (or a whiteout) is not

supported.

In addition to the errors returned by the mknod(), the mknodat() may fail if:

[EBADF] The path argument does not specify an absolute path and the fd argument is

neither AT_FDCWD nor a valid file descriptor open for searching.

MKNOD(2) FreeBSD System Calls Manual MKNOD(2)

FreeBSD 14.0-RELEASE-p11 March 30, 2020 FreeBSD 14.0-RELEASE-p11



[ENOTDIR] The path argument is not an absolute path and fd is neither AT_FDCWD nor a file

descriptor associated with a directory.

SEE ALSO
chmod(2), mkfifo(2), stat(2), umask(2)

STANDARDS
The mknodat() system call follows The Open Group Extended API Set 2 specification.

HISTORY
The mknod() function appeared in Version 4 AT&T UNIX. The mknodat() system call appeared in

FreeBSD 8.0.

MKNOD(2) FreeBSD System Calls Manual MKNOD(2)

FreeBSD 14.0-RELEASE-p11 March 30, 2020 FreeBSD 14.0-RELEASE-p11


