
NAME
mod_cc, DECLARE_CC_MODULE, CCV - Modular Congestion Control

SYNOPSIS
#include <netinet/tcp.h>
#include <netinet/cc/cc.h>
#include <netinet/cc/cc_module.h>

DECLARE_CC_MODULE(ccname, ccalgo);

CCV(ccv, what);

DESCRIPTION
The mod_cc framework allows congestion control algorithms to be implemented as dynamically

loadable kernel modules via the kld(4) facility. Transport protocols can select from the list of available

algorithms on a connection-by-connection basis, or use the system default (see mod_cc(4) for more

details).

mod_cc modules are identified by an ascii(7) name and set of hook functions encapsulated in a struct

cc_algo, which has the following members:

struct cc_algo {

char name[TCP_CA_NAME_MAX];

int (*mod_init) (void);

int (*mod_destroy) (void);

size_t (*cc_data_sz)(void);

int (*cb_init) (struct cc_var *ccv, void *ptr);

void (*cb_destroy) (struct cc_var *ccv);

void (*conn_init) (struct cc_var *ccv);

void (*ack_received) (struct cc_var *ccv, uint16_t type);

void (*cong_signal) (struct cc_var *ccv, uint32_t type);

void (*post_recovery) (struct cc_var *ccv);

void (*after_idle) (struct cc_var *ccv);

int (*ctl_output)(struct cc_var *, struct sockopt *, void *);

void (*rttsample)(struct cc_var *, uint32_t, uint32_t, uint32_t);

void (*newround)(struct cc_var *, uint32_t);

};

The name field identifies the unique name of the algorithm, and should be no longer than

TCP_CA_NAME_MAX-1 characters in length (the TCP_CA_NAME_MAX define lives in

MOD_CC(9) FreeBSD Kernel Developer’s Manual MOD_CC(9)

FreeBSD 14.0-RELEASE-p11 May 13, 2021 FreeBSD 14.0-RELEASE-p11



<netinet/tcp.h> for compatibility reasons).

The mod_init function is called when a new module is loaded into the system but before the registration

process is complete. It should be implemented if a module needs to set up some global state prior to

being available for use by new connections. Returning a non-zero value from mod_init will cause the

loading of the module to fail.

The mod_destroy function is called prior to unloading an existing module from the kernel. It should be

implemented if a module needs to clean up any global state before being removed from the kernel. The

return value is currently ignored.

The cc_data_sz function is called by the socket option code to get the size of data that the cb_init

function needs. The socket option code then preallocates the modules memory so that the cb_init

function will not fail (the socket option code uses M_WAITOK with no locks held to do this).

The cb_init function is called when a TCP control block struct tcpcb is created. It should be

implemented if a module needs to allocate memory for storing private per-connection state. Returning a

non-zero value from cb_init will cause the connection set up to be aborted, terminating the connection as

a result. Note that the ptr argument passed to the function should be checked to see if it is non-NULL, if

so it is preallocated memory that the cb_init function must use instead of calling malloc itself.

The cb_destroy function is called when a TCP control block struct tcpcb is destroyed. It should be

implemented if a module needs to free memory allocated in cb_init.

The conn_init function is called when a new connection has been established and variables are being

initialised. It should be implemented to initialise congestion control algorithm variables for the newly

established connection.

The ack_received function is called when a TCP acknowledgement (ACK) packet is received. Modules

use the type argument as an input to their congestion management algorithms. The ACK types currently

reported by the stack are CC_ACK and CC_DUPACK. CC_ACK indicates the received ACK

acknowledges previously unacknowledged data. CC_DUPACK indicates the received ACK

acknowledges data we have already received an ACK for.

The cong_signal function is called when a congestion event is detected by the TCP stack. Modules use

the type argument as an input to their congestion management algorithms. The congestion event types

currently reported by the stack are CC_ECN, CC_RTO, CC_RTO_ERR and CC_NDUPACK.

CC_ECN is reported when the TCP stack receives an explicit congestion notification (RFC3168).

CC_RTO is reported when the retransmission time out timer fires. CC_RTO_ERR is reported if the

retransmission time out timer fired in error. CC_NDUPACK is reported if N duplicate ACKs have been

MOD_CC(9) FreeBSD Kernel Developer’s Manual MOD_CC(9)

FreeBSD 14.0-RELEASE-p11 May 13, 2021 FreeBSD 14.0-RELEASE-p11



received back-to-back, where N is the fast retransmit duplicate ack threshold (N=3 currently as per

RFC5681).

The post_recovery function is called after the TCP connection has recovered from a congestion event. It

should be implemented to adjust state as required.

The after_idle function is called when data transfer resumes after an idle period. It should be

implemented to adjust state as required.

The ctl_output function is called when getsockopt(2) or setsockopt(2) is called on a tcp(4) socket with

the struct sockopt pointer forwarded unmodified from the TCP control, and a void * pointer to algorithm

specific argument.

The rttsample function is called to pass round trip time information to the congestion controller. The

additional arguments to the function include the microsecond RTT that is being noted, the number of

times that the data being acknowledged was retransmitted as well as the flightsize at send. For

transports that do not track flightsize at send, this variable will be the current cwnd at the time of the

call.

The newround function is called each time a new round trip time begins. The montonically increasing

round number is also passed to the congestion controller as well. This can be used for various purposes

by the congestion controller (e.g Hystart++).

Note that currently not all TCP stacks call the rttsample and newround function so dependancy on these

functions is also dependant upon which TCP stack is in use.

The DECLARE_CC_MODULE() macro provides a convenient wrapper around the

DECLARE_MODULE(9) macro, and is used to register a mod_cc module with the mod_cc framework.

The ccname argument specifies the module’s name. The ccalgo argument points to the module’s struct

cc_algo.

mod_cc modules must instantiate a struct cc_algo, but are only required to set the name field, and

optionally any of the function pointers. Note that if a module defines the cb_init function it also must

define a cc_data_sz function. This is because when switching from one congestion control module to

another the socket option code will preallocate memory for the cb_init function. If no memory is

allocated by the modules cb_init then the cc_data_sz function should return 0.

The stack will skip calling any function pointer which is NULL, so there is no requirement to implement

any of the function pointers (with the exception of the cb_init <-> cc_data_sz dependancy noted above).

Using the C99 designated initialiser feature to set fields is encouraged.

MOD_CC(9) FreeBSD Kernel Developer’s Manual MOD_CC(9)

FreeBSD 14.0-RELEASE-p11 May 13, 2021 FreeBSD 14.0-RELEASE-p11



Each function pointer which deals with congestion control state is passed a pointer to a struct cc_var,

which has the following members:

struct cc_var {

void *cc_data;

int bytes_this_ack;

tcp_seq curack;

uint32_t flags;

int type;

union ccv_container {

struct tcpcb *tcp;

struct sctp_nets *sctp;

} ccvc;

uint16_t nsegs;

uint8_t labc;

};

struct cc_var groups congestion control related variables into a single, embeddable structure and adds a

layer of indirection to accessing transport protocol control blocks. The eventual goal is to allow a single

set of mod_cc modules to be shared between all congestion aware transport protocols, though currently

only tcp(4) is supported.

To aid the eventual transition towards this goal, direct use of variables from the transport protocol’s data

structures is strongly discouraged. However, it is inevitable at the current time to require access to some

of these variables, and so the CCV() macro exists as a convenience accessor. The ccv argument points

to the struct cc_var passed into the function by the mod_cc framework. The what argument specifies the

name of the variable to access.

Apart from the type and ccv_container fields, the remaining fields in struct cc_var are for use by mod_cc
modules.

The cc_data field is available for algorithms requiring additional per-connection state to attach a

dynamic memory pointer to. The memory should be allocated and attached in the module’s cb_init hook

function.

The bytes_this_ack field specifies the number of new bytes acknowledged by the most recently received

ACK packet. It is only valid in the ack_received hook function.

The curack field specifies the sequence number of the most recently received ACK packet. It is only

valid in the ack_received, cong_signal and post_recovery hook functions.

MOD_CC(9) FreeBSD Kernel Developer’s Manual MOD_CC(9)

FreeBSD 14.0-RELEASE-p11 May 13, 2021 FreeBSD 14.0-RELEASE-p11



The flags field is used to pass useful information from the stack to a mod_cc module. The

CCF_ABC_SENTAWND flag is relevant in ack_received and is set when appropriate byte counting

(RFC3465) has counted a window’s worth of bytes has been sent. It is the module’s responsibility to

clear the flag after it has processed the signal. The CCF_CWND_LIMITED flag is relevant in

ack_received and is set when the connection’s ability to send data is currently constrained by the value

of the congestion window. Algorithms should use the absence of this flag being set to avoid

accumulating a large difference between the congestion window and send window.

The nsegs variable is used to pass in how much compression was done by the local LRO system. So for

example if LRO pushed three in-order acknowledgements into one acknowledgement the variable would

be set to three.

The labc variable is used in conjunction with the CCF_USE_LOCAL_ABC flag to override what labc

variable the congestion controller will use for this particular acknowledgement.

SEE ALSO
cc_cdg(4), cc_chd(4), cc_cubic(4), cc_dctcp(4), cc_hd(4), cc_htcp(4), cc_newreno(4), cc_vegas(4),

mod_cc(4), tcp(4)

ACKNOWLEDGEMENTS
Development and testing of this software were made possible in part by grants from the FreeBSD

Foundation and Cisco University Research Program Fund at Community Foundation Silicon Valley.

FUTURE WORK
Integrate with sctp(4).

HISTORY
The modular Congestion Control (CC) framework first appeared in FreeBSD 9.0.

The framework was first released in 2007 by James Healy and Lawrence Stewart whilst working on the

NewTCP research project at Swinburne University of Technology’s Centre for Advanced Internet

Architectures, Melbourne, Australia, which was made possible in part by a grant from the Cisco

University Research Program Fund at Community Foundation Silicon Valley. More details are

available at:

http://caia.swin.edu.au/urp/newtcp/

AUTHORS
The mod_cc framework was written by Lawrence Stewart <lstewart@FreeBSD.org>, James Healy

<jimmy@deefa.com> and David Hayes <david.hayes@ieee.org>.

MOD_CC(9) FreeBSD Kernel Developer’s Manual MOD_CC(9)

FreeBSD 14.0-RELEASE-p11 May 13, 2021 FreeBSD 14.0-RELEASE-p11



This manual page was written by David Hayes <david.hayes@ieee.org> and Lawrence Stewart

<lstewart@FreeBSD.org>.

MOD_CC(9) FreeBSD Kernel Developer’s Manual MOD_CC(9)

FreeBSD 14.0-RELEASE-p11 May 13, 2021 FreeBSD 14.0-RELEASE-p11


