
NAME
mps - LSI Fusion-MPT 2 IT/IR 6Gb/s Serial Attached SCSI/SATA driver

SYNOPSIS
To compile this driver into the kernel, place these lines in the kernel configuration file:

device pci
device scbus
device mps

The driver can be loaded as a module at boot time by placing this line in loader.conf(5):

mps_load="YES"

DESCRIPTION
The mps driver provides support for Broadcom Ltd./Avago Tech (LSI) Fusion-MPT 2 IT/IR SAS

controllers and WarpDrive solid state storage cards.

HARDWARE
These controllers are supported by the mps driver:

+o Broadcom Ltd./Avago Tech (LSI) SAS 2004 (4 Port SAS)

+o Broadcom Ltd./Avago Tech (LSI) SAS 2008 (8 Port SAS)

+o Broadcom Ltd./Avago Tech (LSI) SAS 2108 (8 Port SAS)

+o Broadcom Ltd./Avago Tech (LSI) SAS 2116 (16 Port SAS)

+o Broadcom Ltd./Avago Tech (LSI) SAS 2208 (8 Port SAS)

+o Broadcom Ltd./Avago Tech (LSI) SAS 2308 (8 Port SAS)

+o Broadcom Ltd./Avago Tech (LSI) SSS6200 Solid State Storage

+o Intel Integrated RAID Module RMS25JB040

+o Intel Integrated RAID Module RMS25JB080

+o Intel Integrated RAID Module RMS25KB040

+o Intel Integrated RAID Module RMS25KB080

CONFIGURATION
In all tunable descriptions below, X represents the adapter number.

To disable MSI interrupts for all mps driver instances, set this tunable value in loader.conf(5):

hw.mps.disable_msi=1

MPS(4) FreeBSD Kernel Interfaces Manual MPS(4)

FreeBSD 14.0-RELEASE-p6 June 1, 2019 FreeBSD 14.0-RELEASE-p6



To disable MSI interrupts for a specific mps driver instance, set this tunable value in loader.conf(5):

dev.mps.X.disable_msi=1

To disable MSI-X interrupts for all mps driver instances, set this tunable value in loader.conf(5):

hw.mps.disable_msix=1

To disable MSI-X interrupts for a specific mps driver instance, set this tunable value in loader.conf(5):

dev.mps.X.disable_msix=1

To set the maximum number of DMA chains allocated for all adapters, set this tunable in loader.conf(5):

hw.mps.max_chains=NNNN

To set the maximum number of DMA chains allocated for a specific adapter, set this tunable in

loader.conf(5):

dev.mps.X.max_chains=NNNN

The default max_chains value is 16384.

The current number of free chain frames is stored in the dev.mps.X.chain_free sysctl(8) variable.

The lowest number of free chain frames seen since boot is stored in the dev.mps.X.chain_free_lowwater

sysctl(8) variable.

The number of times that chain frame allocations have failed since boot is stored in the

dev.mps.X.chain_alloc_fail sysctl(8) variable. This can be used to determine whether the max_chains

tunable should be increased to help performance.

The current number of active I/O commands is shown in the dev.mps.X.io_cmds_active sysctl(8)

variable.

To set the maximum number of pages that will be used per I/O for all adapters, set this tunable in

loader.conf(5):

hw.mps.max_io_pages=NNNN

MPS(4) FreeBSD Kernel Interfaces Manual MPS(4)

FreeBSD 14.0-RELEASE-p6 June 1, 2019 FreeBSD 14.0-RELEASE-p6



To set the maximum number of pages that will be used per I/O for a specific adapter, set this tunable in

loader.conf(5):

dev.mps.X.max_io_pages=NNNN

The default max_io_pages value is -1, meaning that the maximum I/O size that will be used per I/O will

be calculated using the IOCFacts values stored in the controller. The lowest value that the driver will

use for max_io_pages is 1, otherwise IOCFacts will be used to calculate the maximum I/O size. The

smaller I/O size calculated from either max_io_pages or IOCFacts will be the maximum I/O size used

by the driver.

The highest number of active I/O commands seen since boot is stored in the

dev.mps.X.io_cmds_highwater sysctl(8) variable.

Devices can be excluded from mps control for all adapters by setting this tunable in loader.conf(5):

hw.mps.exclude_ids=Y

Y represents the target ID of the device. If more than one device is to be excluded, target IDs are

separated by commas.

Devices can be excluded from mps control for a specific adapter by setting this tunable in

loader.conf(5):

dev.mps.X.exclude_ids=Y

Y represents the target ID of the device. If more than one device is to be excluded, target IDs are

separated by commas.

The adapter can issue the StartStopUnit SCSI command to SATA direct-access devices during

shutdown. This allows the device to quiesce powering down. To control this feature for all adapters, set

the

hw.mps.enable_ssu

tunable in loader.conf(5) to one of these values:

0 Do not send SSU to either HDDs or SSDs.

1 Send SSU to SSDs, but not to HDDs. This is the default value.

MPS(4) FreeBSD Kernel Interfaces Manual MPS(4)

FreeBSD 14.0-RELEASE-p6 June 1, 2019 FreeBSD 14.0-RELEASE-p6



2 Send SSU to HDDs, but not to SSDs.

3 Send SSU to both HDDs and SSDs.

To control this feature for a specific adapter, set this tunable value in loader.conf(5):

dev.mps.X.enable_ssu

The same set of values are valid as when setting this tunable for all adapters.

SATA disks that take several seconds to spin up and fail the SATA Identify command might not be

discovered by the driver. This problem can sometimes be overcome by increasing the value of the

spinup wait time in loader.conf(5) with the

hw.mps.spinup_wait_time=NNNN

tunable. NNNN represents the number of seconds to wait for SATA devices to spin up when the device

fails the initial SATA Identify command.

Spinup wait times can be set for specific adapters in loader.conf(5): with the

dev.mps.X.spinup_wait_time=NNNN

tunable. NNNN is the number of seconds to wait for SATA devices to spin up when they fail the initial

SATA Identify command.

The driver can map devices discovered by the adapter so that target IDs corresponding to a specific

device persist across resets and reboots. In some cases it is possible for devices to lose their mapped IDs

due to unexpected behavior from certain hardware, such as some types of enclosures. To overcome this

problem, a tunable is provided that will force the driver to map devices using the Phy number associated

with the device. This feature is not recommended if the topology includes multiple

enclosures/expanders. If multiple enclosures/expanders are present in the topology, Phy numbers are

repeated, causing all devices at these Phy numbers except the first device to fail enumeration. To

control this feature for all adapters, set the

hw.mps.use_phy_num

tunable in loader.conf(5) to one of these values:

-1 Only use Phy numbers to map devices and bypass the driver’s mapping logic.

MPS(4) FreeBSD Kernel Interfaces Manual MPS(4)

FreeBSD 14.0-RELEASE-p6 June 1, 2019 FreeBSD 14.0-RELEASE-p6



0 Never use Phy numbers to map devices.

1 Use Phy numbers to map devices, but only if the driver’s mapping logic fails to map the

device that is being enumerated. This is the default value.

To control this feature for a specific adapter, set this tunable value in loader.conf(5):

dev.mps.X.use_phy_num

The same set of values are valid as when setting this tunable for all adapters.

DEBUGGING
Driver diagnostic printing is controlled in loader.conf(5) by using the global hw.mps.debug_level and

per-device dev.mps.X.debug_level tunables. One can alter the debug level for any adapter at run-time

using the sysctl(8) variable dev.mps.X.debug_level.

All debug_level variables can be named by either an integer value or a text string. Multiple values can

be specified together by either ORing the integer values or by providing a comma-separated list of

names. A text string prefixed by "+" adds the specified debug levels to the existing set, while the prefix

"-" removes them from the existing set. The current debug_level status is reported in both formats for

convenience. The following levels are available:

Flag Name Description

0x0001 info Basic information (enabled by default)

0x0002 fault Driver faults (enabled by default)

0x0004 event Controller events

0x0008 log Logging data from controller

0x0010 recovery Tracing of recovery operations

0x0020 error Parameter errors and programming bugs

0x0040 init System initialization operations

0x0080 xinfo More detailed information

0x0100 user Tracing of user-generated commands (IOCTL)

0x0200 mapping Tracing of device mapping

0x0400 trace Tracing through driver functions

SEE ALSO
cam(4), cd(4), ch(4), da(4), mpr(4), mpt(4), pci(4), sa(4), scsi(4), targ(4), loader.conf(5), mpsutil(8),

sysctl(8)

HISTORY

MPS(4) FreeBSD Kernel Interfaces Manual MPS(4)

FreeBSD 14.0-RELEASE-p6 June 1, 2019 FreeBSD 14.0-RELEASE-p6



The mps driver first appeared in FreeBSD 9.0.

AUTHORS
The mps driver was originally written by Scott Long <scottl@FreeBSD.org>. It has been improved and

tested by LSI Corporation, Avago Technologies (formerly LSI), and Broadcom Ltd. (formerly Avago).

This manual page was written by Ken Merry <ken@FreeBSD.org> with additional input from Stephen

McConnell <slm@FreeBSD.org>.

MPS(4) FreeBSD Kernel Interfaces Manual MPS(4)

FreeBSD 14.0-RELEASE-p6 June 1, 2019 FreeBSD 14.0-RELEASE-p6


