
NAME
mtx_pool, mtx_pool_alloc, mtx_pool_find, mtx_pool_lock, mtx_pool_lock_spin, mtx_pool_unlock,

mtx_pool_unlock_spin, mtx_pool_create, mtx_pool_destroy - mutex pool routines

SYNOPSIS
#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>

struct mtx *

mtx_pool_alloc(struct mtx_pool *pool);

struct mtx *

mtx_pool_find(struct mtx_pool *pool, void *ptr);

void

mtx_pool_lock(struct mtx_pool *pool, void *ptr);

void

mtx_pool_lock_spin(struct mtx_pool *pool, void *ptr);

void

mtx_pool_unlock(struct mtx_pool *pool, void *ptr);

void

mtx_pool_unlock_spin(struct mtx_pool *pool, void *ptr);

struct mtx_pool *

mtx_pool_create(const char *mtx_name, int pool_size, int opts);

void

mtx_pool_destroy(struct mtx_pool **poolp);

DESCRIPTION
Mutex pools are designed to be used as short term leaf mutexes; i.e., the last mutex one might acquire

before calling mtx_sleep(9). They operate using a shared pool of mutexes. A mutex may be chosen

from the pool based on a supplied pointer, which may or may not point to anything valid, or the caller

may allocate an arbitrary shared mutex from the pool and save the returned mutex pointer for later use.

The shared mutexes in the mtxpool_sleep mutex pool, which is created by default, are standard, non-

MTX_POOL(9) FreeBSD Kernel Developer’s Manual MTX_POOL(9)

FreeBSD 14.2-RELEASE February 6, 2010 FreeBSD 14.2-RELEASE

recursive, blockable mutexes, and should only be used in appropriate situations. The mutexes in the

mtxpool_lockbuilder mutex pool are similar, except that they are initialized with the

MTX_NOWITNESS flag so that they may be used to build higher-level locks. Other mutex pools may

be created that contain mutexes with different properties, such as spin mutexes.

The caller can lock and unlock mutexes returned by the pool routines, but since the mutexes are shared,

the caller should not attempt to destroy them or modify their characteristics. While pool mutexes are

normally leaf mutexes (meaning that one cannot depend on any ordering guarantees after obtaining one),

one can still obtain other mutexes under carefully controlled circumstances. Specifically, if one has a

private mutex (one that was allocated and initialized by the caller), one can obtain it after obtaining a

pool mutex if ordering issues are carefully accounted for. In these cases the private mutex winds up

being the true leaf mutex.

Pool mutexes have the following advantages:

1. No structural overhead; i.e., they can be associated with a structure without adding bloat to it.

2. Mutexes can be obtained for invalid pointers, which is useful when one uses mutexes to

interlock destructor operations.

3. No initialization or destruction overhead.

4. Can be used with mtx_sleep(9).

And the following disadvantages:

1. Should generally only be used as leaf mutexes.

2. Pool/pool dependency ordering cannot be guaranteed.

3. Possible L1 cache mastership contention between CPUs.

mtx_pool_alloc() obtains a shared mutex from the specified pool. This routine uses a simple rover to

choose one of the shared mutexes managed by the mtx_pool subsystem.

mtx_pool_find() returns the shared mutex associated with the specified address. This routine will create

a hash out of the pointer passed into it and will choose a shared mutex from the specified pool based on

that hash. The pointer does not need to point to anything real.

mtx_pool_lock(), mtx_pool_lock_spin(), mtx_pool_unlock(), and mtx_pool_unlock_spin() lock and

unlock the shared mutex from the specified pool associated with the specified address; they are a

combination of mtx_pool_find() and mtx_lock(9), mtx_lock_spin(9), mtx_unlock(9), and

mtx_unlock_spin(9), respectively. Since these routines must first find the mutex to operate on, they are

not as fast as directly using the mutex pointer returned by a previous invocation of mtx_pool_find() or

mtx_pool_alloc().

MTX_POOL(9) FreeBSD Kernel Developer’s Manual MTX_POOL(9)

FreeBSD 14.2-RELEASE February 6, 2010 FreeBSD 14.2-RELEASE

mtx_pool_create() allocates and initializes a new mutex pool of the specified size. The pool size must

be a power of two. The opts argument is passed to mtx_init(9) to set the options for each mutex in the

pool.

mtx_pool_destroy() calls mtx_destroy(9) on each mutex in the specified pool, deallocates the memory

associated with the pool, and assigns NULL to the pool pointer.

SEE ALSO
locking(9), mutex(9)

HISTORY
These routines first appeared in FreeBSD 5.0.

MTX_POOL(9) FreeBSD Kernel Developer’s Manual MTX_POOL(9)

FreeBSD 14.2-RELEASE February 6, 2010 FreeBSD 14.2-RELEASE

