
NAME
ne_ssl_set_verify - register an SSL certificate verification callback

SYNOPSIS
#include <ne_session.h>

typedef int ne_ssl_verify_fn(void *userdata, int failures, const ne_ssl_certificate *cert);

void ne_ssl_set_verify(ne_session *session, ne_ssl_verify_fn verify_fn, void *userdata);

DESCRIPTION
To enable manual SSL certificate verification, a callback can be registered using ne_ssl_set_verify. If

such a callback is not registered, when a connection is established to an SSL server which does not

present a certificate signed by a trusted CA (see ne_ssl_trust_cert), or if the certificate presented is

invalid in some way, the connection will fail.

When the callback is invoked, the failures parameter gives a bitmask indicating in what way the

automatic certificate verification failed. The value is equal to the bit-wise OR of one or more of the

following constants (and is guaranteed to be non-zero):

NE_SSL_NOTYETVALID
The certificate is not yet valid.

NE_SSL_EXPIRED
The certificate has expired.

NE_SSL_IDMISMATCH
The hostname used for the session does not match the hostname to which the certificate was

issued.

NE_SSL_UNTRUSTED
The Certificate Authority which signed the certificate is not trusted.

Note that if either of the NE_SSL_IDMISMATCH or NE_SSL_UNTRUSTED failures is given, the

connection may have been intercepted by a third party, and must not be presumed to be "secure".

The cert parameter passed to the callback represents the certificate which was presented by the server.

If the server presented a chain of certificates, the chain can be accessed using ne_ssl_cert_signedby.

The cert object given is not valid after the callback returns.

NE_SSL_SET_VERIFY(3) neon API reference NE_SSL_SET_VERIFY(3)

neon 0.32.5 21 January 2023 NE_SSL_SET_VERIFY(3)



RETURN VALUE
The verification callback must return zero to indicate that the certificate should be trusted; and

non-zero otherwise (in which case, the connection will fail).

EXAMPLES
The following code implements an example verification callback, using the dump_cert function from

ne_ssl_cert_subject to display certification information. Notice that the hostname of the server used for

the session is passed as the userdata parameter to the callback.

static int

my_verify(void *userdata, int failures, const ne_ssl_certificate *cert)

{

const char *hostname = userdata;

dump_cert(cert);

puts("Certificate verification failed - the connection may have been "

"intercepted by a third party!");

if (failures & NE_SSL_IDMISMATCH) {

const char *id = ne_ssl_cert_identity(cert);

if (id)

printf("Server certificate was issued to ’%s’ not ’%s’.\n",

id, hostname);

else

printf("The certificate was not issued for ’%s’\n", hostname);

}

if (failures & NE_SSL_UNTRUSTED)

puts("The certificate is not signed by a trusted Certificate Authority.");

/* ... check for validity failures ... */

if (prompt_user())

return 1; /* fail verification */

else

return 0; /* trust the certificate anyway */

}

int

NE_SSL_SET_VERIFY(3) neon API reference NE_SSL_SET_VERIFY(3)

neon 0.32.5 21 January 2023 NE_SSL_SET_VERIFY(3)



main(...)

{

ne_session *sess = ne_session_create("https", "some.host.name", 443);

ne_ssl_set_verify(sess, my_verify, "some.host.name");

...

}

SEE ALSO
ne_ssl_trust_cert, ne_ssl_readable_dname, ne_ssl_cert_subject

AUTHOR
Joe Orton

Author.

COPYRIGHT

NE_SSL_SET_VERIFY(3) neon API reference NE_SSL_SET_VERIFY(3)

neon 0.32.5 21 January 2023 NE_SSL_SET_VERIFY(3)


