
NAME
netgraph - graph based kernel networking subsystem

DESCRIPTION
The netgraph system provides a uniform and modular system for the implementation of kernel objects

which perform various networking functions. The objects, known as nodes, can be arranged into

arbitrarily complicated graphs. Nodes have hooks which are used to connect two nodes together,

forming the edges in the graph. Nodes communicate along the edges to process data, implement

protocols, etc.

The aim of netgraph is to supplement rather than replace the existing kernel networking infrastructure.

It provides:

+o A flexible way of combining protocol and link level drivers.

+o A modular way to implement new protocols.

+o A common framework for kernel entities to inter-communicate.

+o A reasonably fast, kernel-based implementation.

Nodes and Types
The most fundamental concept in netgraph is that of a node. All nodes implement a number of

predefined methods which allow them to interact with other nodes in a well defined manner.

Each node has a type, which is a static property of the node determined at node creation time. A node’s

type is described by a unique ASCII type name. The type implies what the node does and how it may be

connected to other nodes.

In object-oriented language, types are classes, and nodes are instances of their respective class. All node

types are subclasses of the generic node type, and hence inherit certain common functionality and

capabilities (e.g., the ability to have an ASCII name).

Nodes may be assigned a globally unique ASCII name which can be used to refer to the node. The

name must not contain the characters ‘.’ or ‘:’, and is limited to NG_NODESIZ characters (including the

terminating NUL character).

Each node instance has a unique ID number which is expressed as a 32-bit hexadecimal value. This

value may be used to refer to a node when there is no ASCII name assigned to it.

Hooks
Nodes are connected to other nodes by connecting a pair of hooks, one from each node. Data flows

bidirectionally between nodes along connected pairs of hooks. A node may have as many hooks as it

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

needs, and may assign whatever meaning it wants to a hook.

Hooks have these properties:

+o A hook has an ASCII name which is unique among all hooks on that node (other hooks on other

nodes may have the same name). The name must not contain the characters ‘.’ or ‘:’, and is limited

to NG_HOOKSIZ characters (including the terminating NUL character).

+o A hook is always connected to another hook. That is, hooks are created at the time they are

connected, and breaking an edge by removing either hook destroys both hooks.

+o A hook can be set into a state where incoming packets are always queued by the input queueing

system, rather than being delivered directly. This can be used when the data is sent from an interrupt

handler, and processing must be quick so as not to block other interrupts.

+o A hook may supply overriding receive data and receive message functions, which should be used for

data and messages received through that hook in preference to the general node-wide methods.

A node may decide to assign special meaning to some hooks. For example, connecting to the hook

named debug might trigger the node to start sending debugging information to that hook.

Data Flow
Two types of information flow between nodes: data messages and control messages. Data messages are

passed in mbuf chains along the edges in the graph, one edge at a time. The first mbuf in a chain must

have the M_PKTHDR flag set. Each node decides how to handle data received through one of its

hooks.

Along with data, nodes can also receive control messages. There are generic and type-specific control

messages. Control messages have a common header format, followed by type-specific data, and are

binary structures for efficiency. However, node types may also support conversion of the type-specific

data between binary and ASCII formats, for debugging and human interface purposes (see the

NGM_ASCII2BINARY and NGM_BINARY2ASCII generic control messages below). Nodes are not

required to support these conversions.

There are three ways to address a control message. If there is a sequence of edges connecting the two

nodes, the message may be "source routed" by specifying the corresponding sequence of ASCII hook

names as the destination address for the message (relative addressing). If the destination is adjacent to

the source, then the source node may simply specify (as a pointer in the code) the hook across which the

message should be sent. Otherwise, the recipient node’s global ASCII name (or equivalent ID-based

name) is used as the destination address for the message (absolute addressing). The two types of ASCII

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

addressing may be combined, by specifying an absolute start node and a sequence of hooks. Only the

ASCII addressing modes are available to control programs outside the kernel; use of direct pointers is

limited to kernel modules.

Messages often represent commands that are followed by a reply message in the reverse direction. To

facilitate this, the recipient of a control message is supplied with a "return address" that is suitable for

addressing a reply.

Each control message contains a 32-bit value, called a "typecookie", indicating the type of the message,

i.e. how to interpret it. Typically each type defines a unique typecookie for the messages that it

understands. However, a node may choose to recognize and implement more than one type of messages.

If a message is delivered to an address that implies that it arrived at that node through a particular hook

(as opposed to having been directly addressed using its ID or global name) then that hook is identified to

the receiving node. This allows a message to be re-routed or passed on, should a node decide that this is

required, in much the same way that data packets are passed around between nodes. A set of standard

messages for flow control and link management purposes are defined by the base system that are usually

passed around in this manner. Flow control message would usually travel in the opposite direction to

the data to which they pertain.

Netgraph is (Usually) Functional
In order to minimize latency, most netgraph operations are functional. That is, data and control

messages are delivered by making function calls rather than by using queues and mailboxes. For

example, if node A wishes to send a data mbuf to neighboring node B, it calls the generic netgraph data

delivery function. This function in turn locates node B and calls B’s "receive data" method. There are

exceptions to this.

Each node has an input queue, and some operations can be considered to be writers in that they alter the

state of the node. Obviously, in an SMP world it would be bad if the state of a node were changed while

another data packet were transiting the node. For this purpose, the input queue implements a

reader/writer semantic so that when there is a writer in the node, all other requests are queued, and while

there are readers, a writer, and any following packets are queued. In the case where there is no reason to

queue the data, the input method is called directly, as mentioned above.

A node may declare that all requests should be considered as writers, or that requests coming in over a

particular hook should be considered to be a writer, or even that packets leaving or entering across a

particular hook should always be queued, rather than delivered directly (often useful for interrupt

routines who want to get back to the hardware quickly). By default, all control message packets are

considered to be writers unless specifically declared to be a reader in their definition. (See

NGM_READONLY in <netgraph/ng_message.h>.)

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

While this mode of operation results in good performance, it has a few implications for node developers:

+o Whenever a node delivers a data or control message, the node may need to allow for the possibility

of receiving a returning message before the original delivery function call returns.

+o Netgraph provides internal synchronization between nodes. Data always enters a "graph" at an edge

node. An edge node is a node that interfaces between netgraph and some other part of the system.

Examples of "edge nodes" include device drivers, the socket, ether, tty, and ksocket node type. In

these edge nodes, the calling thread directly executes code in the node, and from that code calls upon

the netgraph framework to deliver data across some edge in the graph. From an execution point of

view, the calling thread will execute the netgraph framework methods, and if it can acquire a lock to

do so, the input methods of the next node. This continues until either the data is discarded or queued

for some device or system entity, or the thread is unable to acquire a lock on the next node. In that

case, the data is queued for the node, and execution rewinds back to the original calling entity. The

queued data will be picked up and processed by either the current holder of the lock when they have

completed their operations, or by a special netgraph thread that is activated when there are such

items queued.

+o It is possible for an infinite loop to occur if the graph contains cycles.

So far, these issues have not proven problematical in practice.

Interaction with Other Parts of the Kernel
A node may have a hidden interaction with other components of the kernel outside of the netgraph
subsystem, such as device hardware, kernel protocol stacks, etc. In fact, one of the benefits of netgraph
is the ability to join disparate kernel networking entities together in a consistent communication

framework.

An example is the socket node type which is both a netgraph node and a socket(2) in the protocol family

PF_NETGRAPH. Socket nodes allow user processes to participate in netgraph. Other nodes

communicate with socket nodes using the usual methods, and the node hides the fact that it is also

passing information to and from a cooperating user process.

Another example is a device driver that presents a node interface to the hardware.

Node Methods
Nodes are notified of the following actions via function calls to the following node methods, and may

accept or reject that action (by returning the appropriate error code):

Creation of a new node

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

The constructor for the type is called. If creation of a new node is allowed, constructor method may

allocate any special resources it needs. For nodes that correspond to hardware, this is typically done

during the device attach routine. Often a global ASCII name corresponding to the device name is

assigned here as well.

Creation of a new hook

The hook is created and tentatively linked to the node, and the node is told about the name that will

be used to describe this hook. The node sets up any special data structures it needs, or may reject the

connection, based on the name of the hook.

Successful connection of two hooks

After both ends have accepted their hooks, and the links have been made, the nodes get a chance to

find out who their peer is across the link, and can then decide to reject the connection. Tear-down is

automatic. This is also the time at which a node may decide whether to set a particular hook (or its

peer) into the queueing mode.

Destruction of a hook

The node is notified of a broken connection. The node may consider some hooks to be critical to

operation and others to be expendable: the disconnection of one hook may be an acceptable event

while for another it may effect a total shutdown for the node.

Preshutdown of a node

This method is called before real shutdown, which is discussed below. While in this method, the

node is fully operational and can send a "goodbye" message to its peers, or it can exclude itself from

the chain and reconnect its peers together, like the ng_tee(4) node type does.

Shutdown of a node

This method allows a node to clean up and to ensure that any actions that need to be performed at

this time are taken. The method is called by the generic (i.e., superclass) node destructor which will

get rid of the generic components of the node. Some nodes (usually associated with a piece of

hardware) may be persistent in that a shutdown breaks all edges and resets the node, but does not

remove it. In this case, the shutdown method should not free its resources, but rather, clean up and

then call the NG_NODE_REVIVE() macro to signal the generic code that the shutdown is aborted.

In the case where the shutdown is started by the node itself due to hardware removal or unloading

(via ng_rmnode_self()), it should set the NGF_REALLY_DIE flag to signal to its own shutdown

method that it is not to persist.

Sending and Receiving Data
Two other methods are also supported by all nodes:

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

Receive data message

A netgraph queueable request item, usually referred to as an item, is received by this function. The

item contains a pointer to an mbuf.

The node is notified on which hook the item has arrived, and can use this information in its

processing decision. The receiving node must always NG_FREE_M() the mbuf chain on completion

or error, or pass it on to another node (or kernel module) which will then be responsible for freeing

it. Similarly, the item must be freed if it is not to be passed on to another node, by using the

NG_FREE_ITEM() macro. If the item still holds references to mbufs at the time of freeing then

they will also be appropriately freed. Therefore, if there is any chance that the mbuf will be changed

or freed separately from the item, it is very important that it be retrieved using the NGI_GET_M()

macro that also removes the reference within the item. (Or multiple frees of the same object will

occur.)

If it is only required to examine the contents of the mbufs, then it is possible to use the NGI_M()

macro to both read and rewrite mbuf pointer inside the item.

If developer needs to pass any meta information along with the mbuf chain, he should use

mbuf_tags(9) framework. Note that old netgraph specific meta-data format is obsoleted now.

The receiving node may decide to defer the data by queueing it in the netgraph NETISR system (see

below). It achieves this by setting the HK_QUEUE flag in the flags word of the hook on which that

data will arrive. The infrastructure will respect that bit and queue the data for delivery at a later

time, rather than deliver it directly. A node may decide to set the bit on the peer node, so that its

own output packets are queued.

The node may elect to nominate a different receive data function for data received on a particular

hook, to simplify coding. It uses the NG_HOOK_SET_RCVDATA(hook, fn) macro to do this. The

function receives the same arguments in every way other than it will receive all (and only) packets

from that hook.

Receive control message

This method is called when a control message is addressed to the node. As with the received data,

an item is received, with a pointer to the control message. The message can be examined using the

NGI_MSG() macro, or completely extracted from the item using the NGI_GET_MSG() which also

removes the reference within the item. If the item still holds a reference to the message when it is

freed (using the NG_FREE_ITEM() macro), then the message will also be freed appropriately. If

the reference has been removed, the node must free the message itself using the NG_FREE_MSG()

macro. A return address is always supplied, giving the address of the node that originated the

message so a reply message can be sent anytime later. The return address is retrieved from the item

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

using the NGI_RETADDR() macro and is of type ng_ID_t. All control messages and replies are

allocated with the malloc(9) type M_NETGRAPH_MSG, however it is more convenient to use the

NG_MKMESSAGE() and NG_MKRESPONSE() macros to allocate and fill out a message.

Messages must be freed using the NG_FREE_MSG() macro.

If the message was delivered via a specific hook, that hook will also be made known, which allows

the use of such things as flow-control messages, and status change messages, where the node may

want to forward the message out another hook to that on which it arrived.

The node may elect to nominate a different receive message function for messages received on a

particular hook, to simplify coding. It uses the NG_HOOK_SET_RCVMSG(hook, fn) macro to do

this. The function receives the same arguments in every way other than it will receive all (and only)

messages from that hook.

Much use has been made of reference counts, so that nodes being freed of all references are

automatically freed, and this behaviour has been tested and debugged to present a consistent and

trustworthy framework for the "type module" writer to use.

Addressing
The netgraph framework provides an unambiguous and simple to use method of specifically addressing

any single node in the graph. The naming of a node is independent of its type, in that another node, or

external component need not know anything about the node’s type in order to address it so as to send it a

generic message type. Node and hook names should be chosen so as to make addresses meaningful.

Addresses are either absolute or relative. An absolute address begins with a node name or ID, followed

by a colon, followed by a sequence of hook names separated by periods. This addresses the node

reached by starting at the named node and following the specified sequence of hooks. A relative address

includes only the sequence of hook names, implicitly starting hook traversal at the local node.

There are a couple of special possibilities for the node name. The name ‘.’ (referred to as ‘.:’) always

refers to the local node. Also, nodes that have no global name may be addressed by their ID numbers,

by enclosing the hexadecimal representation of the ID number within the square brackets. Here are

some examples of valid netgraph addresses:

.:

[3f]:

foo:

.:hook1

foo:hook1.hook2

[d80]:hook1

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

The following set of nodes might be created for a site with a single physical frame relay line having two

active logical DLCI channels, with RFC 1490 frames on DLCI 16 and PPP frames over DLCI 20:

[type SYNC] [type FRAME] [type RFC1490]

["Frame1"](uplink)<-->(data)[<un-named>](dlci16)<-->(mux)[<un-named>]

[A] [B](dlci20)<---+ [C]

|

| [type PPP]

+>(mux)[<un-named>]

[D]

One could always send a control message to node C from anywhere by using the name

"Frame1:uplink.dlci16". In this case, node C would also be notified that the message reached it via its

hook mux. Similarly, "Frame1:uplink.dlci20" could reliably be used to reach node D, and node A could

refer to node B as ".:uplink", or simply "uplink". Conversely, B can refer to A as "data". The address

"mux.data" could be used by both nodes C and D to address a message to node A.

Note that this is only for control messages. In each of these cases, where a relative addressing mode is

used, the recipient is notified of the hook on which the message arrived, as well as the originating node.

This allows the option of hop-by-hop distribution of messages and state information. Data messages are

only routed one hop at a time, by specifying the departing hook, with each node making the next routing

decision. So when B receives a frame on hook data, it decodes the frame relay header to determine the

DLCI, and then forwards the unwrapped frame to either C or D.

In a similar way, flow control messages may be routed in the reverse direction to outgoing data. For

example a "buffer nearly full" message from "Frame1:" would be passed to node B which might decide

to send similar messages to both nodes C and D. The nodes would use direct hook pointer addressing to

route the messages. The message may have travelled from "Frame1:" to B as a synchronous reply,

saving time and cycles.

Netgraph Structures
Structures are defined in <netgraph/netgraph.h> (for kernel structures only of interest to nodes) and

<netgraph/ng_message.h> (for message definitions also of interest to user programs).

The two basic object types that are of interest to node authors are nodes and hooks. These two objects

have the following properties that are also of interest to the node writers.

struct ng_node

Node authors should always use the following typedef to declare their pointers, and should never

actually declare the structure.

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

typedef struct ng_node *node_p;

The following properties are associated with a node, and can be accessed in the following manner:

Validity

A driver or interrupt routine may want to check whether the node is still valid. It is assumed that

the caller holds a reference on the node so it will not have been freed, however it may have been

disabled or otherwise shut down. Using the NG_NODE_IS_VALID(node) macro will return this

state. Eventually it should be almost impossible for code to run in an invalid node but at this

time that work has not been completed.

Node ID (ng_ID_t)

This property can be retrieved using the macro NG_NODE_ID(node).

Node name

Optional globally unique name, NUL terminated string. If there is a value in here, it is the name

of the node.

if (NG_NODE_NAME(node)[0] != ’\0’) ...

if (strcmp(NG_NODE_NAME(node), "fred") == 0) ...

A node dependent opaque cookie

Anything of the pointer type can be placed here. The macros NG_NODE_SET_PRIVATE(node,

value) and NG_NODE_PRIVATE(node) set and retrieve this property, respectively.

Number of hooks

The NG_NODE_NUMHOOKS(node) macro is used to retrieve this value.

Hooks

The node may have a number of hooks. A traversal method is provided to allow all the hooks to

be tested for some condition. NG_NODE_FOREACH_HOOK(node, fn, arg, rethook) where fn

is a function that will be called for each hook with the form fn(hook, arg) and returning 0 to

terminate the search. If the search is terminated, then rethook will be set to the hook at which the

search was terminated.

struct ng_hook

Node authors should always use the following typedef to declare their hook pointers.

typedef struct ng_hook *hook_p;

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

The following properties are associated with a hook, and can be accessed in the following manner:

A hook dependent opaque cookie

Anything of the pointer type can be placed here. The macros

NG_HOOK_SET_PRIVATE(hook, value) and NG_HOOK_PRIVATE(hook) set and retrieve

this property, respectively.

An associate node

The macro NG_HOOK_NODE(hook) finds the associated node.

A peer hook (hook_p)

The other hook in this connected pair. The NG_HOOK_PEER(hook) macro finds the peer.

References

The NG_HOOK_REF(hook) and NG_HOOK_UNREF(hook) macros increment and decrement

the hook reference count accordingly. After decrement you should always assume the hook has

been freed unless you have another reference still valid.

Override receive functions

The NG_HOOK_SET_RCVDATA(hook, fn) and NG_HOOK_SET_RCVMSG(hook, fn)

macros can be used to set override methods that will be used in preference to the generic receive

data and receive message functions. To unset these, use the macros to set them to NULL. They

will only be used for data and messages received on the hook on which they are set.

The maintenance of the names, reference counts, and linked list of hooks for each node is handled

automatically by the netgraph subsystem. Typically a node’s private info contains a back-pointer to

the node or hook structure, which counts as a new reference that must be included in the reference

count for the node. When the node constructor is called, there is already a reference for this

calculated in, so that when the node is destroyed, it should remember to do a NG_NODE_UNREF()

on the node.

From a hook you can obtain the corresponding node, and from a node, it is possible to traverse all

the active hooks.

A current example of how to define a node can always be seen in src/sys/netgraph/ng_sample.c and

should be used as a starting point for new node writers.

Netgraph Message Structure
Control messages have the following structure:

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

#define NG_CMDSTRSIZ 32 /* Max command string (including null) */

struct ng_mesg {

struct ng_msghdr {

u_char version; /* Must equal NG_VERSION */

u_char spare; /* Pad to 4 bytes */

uint16_t spare2;

uint32_t arglen; /* Length of cmd/resp data */

uint32_t cmd; /* Command identifier */

uint32_t flags; /* Message status flags */

uint32_t token; /* Reply should have the same token */

uint32_t typecookie; /* Node type understanding this message */

u_char cmdstr[NG_CMDSTRSIZ]; /* cmd string + */

} header;

char data[]; /* placeholder for actual data */

};

#define NG_ABI_VERSION 12 /* Netgraph kernel ABI version */

#define NG_VERSION 8 /* Netgraph message version */

#define NGF_ORIG 0x00000000 /* The msg is the original request */

#define NGF_RESP 0x00000001 /* The message is a response */

Control messages have the fixed header shown above, followed by a variable length data section which

depends on the type cookie and the command. Each field is explained below:

version

Indicates the version of the netgraph message protocol itself. The current version is

NG_VERSION.

arglen This is the length of any extra arguments, which begin at data.

flags Indicates whether this is a command or a response control message.

token The token is a means by which a sender can match a reply message to the corresponding

command message; the reply always has the same token.

typecookie

The corresponding node type’s unique 32-bit value. If a node does not recognize the type cookie

it must reject the message by returning EINVAL.

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

Each type should have an include file that defines the commands, argument format, and cookie

for its own messages. The typecookie ensures that the same header file was included by both

sender and receiver; when an incompatible change in the header file is made, the typecookie

must be changed. The de-facto method for generating unique type cookies is to take the seconds

from the Epoch at the time the header file is written (i.e., the output of "date -u +%s").

There is a predefined typecookie NGM_GENERIC_COOKIE for the generic node type, and a

corresponding set of generic messages which all nodes understand. The handling of these

messages is automatic.

cmd The identifier for the message command. This is type specific, and is defined in the same header

file as the typecookie.

cmdstr

Room for a short human readable version of command (for debugging purposes only).

Some modules may choose to implement messages from more than one of the header files and thus

recognize more than one type cookie.

Control Message ASCII Form
Control messages are in binary format for efficiency. However, for debugging and human interface

purposes, and if the node type supports it, control messages may be converted to and from an equivalent

ASCII form. The ASCII form is similar to the binary form, with two exceptions:

1. The cmdstr header field must contain the ASCII name of the command, corresponding to the cmd

header field.

2. The arguments field contains a NUL-terminated ASCII string version of the message arguments.

In general, the arguments field of a control message can be any arbitrary C data type. Netgraph includes

parsing routines to support some pre-defined datatypes in ASCII with this simple syntax:

+o Integer types are represented by base 8, 10, or 16 numbers.

+o Strings are enclosed in double quotes and respect the normal C language backslash escapes.

+o IP addresses have the obvious form.

+o Arrays are enclosed in square brackets, with the elements listed consecutively starting at index zero.

An element may have an optional index and equals sign (‘=’) preceding it. Whenever an element

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

does not have an explicit index, the index is implicitly the previous element’s index plus one.

+o Structures are enclosed in curly braces, and each field is specified in the form fieldname=value.

+o Any array element or structure field whose value is equal to its "default value" may be omitted. For

integer types, the default value is usually zero; for string types, the empty string.

+o Array elements and structure fields may be specified in any order.

Each node type may define its own arbitrary types by providing the necessary routines to parse and

unparse. ASCII forms defined for a specific node type are documented in the corresponding man page.

Generic Control Messages
There are a number of standard predefined messages that will work for any node, as they are supported

directly by the framework itself. These are defined in <netgraph/ng_message.h> along with the basic

layout of messages and other similar information.

NGM_CONNECT

Connect to another node, using the supplied hook names on either end.

NGM_MKPEER

Construct a node of the given type and then connect to it using the supplied hook names.

NGM_SHUTDOWN

The target node should disconnect from all its neighbours and shut down. Persistent nodes such

as those representing physical hardware might not disappear from the node namespace, but only

reset themselves. The node must disconnect all of its hooks. This may result in neighbors

shutting themselves down, and possibly a cascading shutdown of the entire connected graph.

NGM_NAME

Assign a name to a node. Nodes can exist without having a name, and this is the default for

nodes created using the NGM_MKPEER method. Such nodes can only be addressed relatively

or by their ID number.

NGM_RMHOOK

Ask the node to break a hook connection to one of its neighbours. Both nodes will have their

"disconnect" method invoked. Either node may elect to totally shut down as a result.

NGM_NODEINFO

Asks the target node to describe itself. The four returned fields are the node name (if named),

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

the node type, the node ID and the number of hooks attached. The ID is an internal number

unique to that node.

NGM_LISTHOOKS

This returns the information given by NGM_NODEINFO, but in addition includes an array of

fields describing each link, and the description for the node at the far end of that link.

NGM_LISTNAMES

This returns an array of node descriptions (as for NGM_NODEINFO) where each entry of the

array describes a named node. All named nodes will be described.

NGM_LISTNODES

This is the same as NGM_LISTNAMES except that all nodes are listed regardless of whether

they have a name or not.

NGM_LISTTYPES

This returns a list of all currently installed netgraph types.

NGM_TEXT_STATUS

The node may return a text formatted status message. The status information is determined

entirely by the node type. It is the only "generic" message that requires any support within the

node itself and as such the node may elect to not support this message. The text response must

be less than NG_TEXTRESPONSE bytes in length (presently 1024). This can be used to return

general status information in human readable form.

NGM_BINARY2ASCII

This message converts a binary control message to its ASCII form. The entire control message

to be converted is contained within the arguments field of the NGM_BINARY2ASCII message

itself. If successful, the reply will contain the same control message in ASCII form. A node will

typically only know how to translate messages that it itself understands, so the target node of the

NGM_BINARY2ASCII is often the same node that would actually receive that message.

NGM_ASCII2BINARY

The opposite of NGM_BINARY2ASCII. The entire control message to be converted, in ASCII

form, is contained in the arguments section of the NGM_ASCII2BINARY and need only have

the flags, cmdstr, and arglen header fields filled in, plus the NUL-terminated string version of the

arguments in the arguments field. If successful, the reply contains the binary version of the

control message.

Flow Control Messages

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

In addition to the control messages that affect nodes with respect to the graph, there are also a number of

flow control messages defined. At present these are not handled automatically by the system, so nodes

need to handle them if they are going to be used in a graph utilising flow control, and will be in the

likely path of these messages. The default action of a node that does not understand these messages

should be to pass them onto the next node. Hopefully some helper functions will assist in this

eventually. These messages are also defined in <netgraph/ng_message.h> and have a separate cookie

NG_FLOW_COOKIE to help identify them. They will not be covered in depth here.

INITIALIZATION
The base netgraph code may either be statically compiled into the kernel or else loaded dynamically as a

KLD via kldload(8). In the former case, include

options NETGRAPH

in your kernel configuration file. You may also include selected node types in the kernel compilation,

for example:

options NETGRAPH
options NETGRAPH_SOCKET
options NETGRAPH_ECHO

Once the netgraph subsystem is loaded, individual node types may be loaded at any time as KLD

modules via kldload(8). Moreover, netgraph knows how to automatically do this; when a request to

create a new node of unknown type type is made, netgraph will attempt to load the KLD module

ng_<type>.ko.

Types can also be installed at boot time, as certain device drivers may want to export each instance of

the device as a netgraph node.

In general, new types can be installed at any time from within the kernel by calling ng_newtype(),

supplying a pointer to the type’s struct ng_type structure.

The NETGRAPH_INIT() macro automates this process by using a linker set.

EXISTING NODE TYPES
Several node types currently exist. Each is fully documented in its own man page:

SOCKET

The socket type implements two new sockets in the new protocol domain PF_NETGRAPH. The

new sockets protocols are NG_DATA and NG_CONTROL, both of type SOCK_DGRAM.

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

Typically one of each is associated with a socket node. When both sockets have closed, the node

will shut down. The NG_DATA socket is used for sending and receiving data, while the

NG_CONTROL socket is used for sending and receiving control messages. Data and control

messages are passed using the sendto(2) and recvfrom(2) system calls, using a struct

sockaddr_ng socket address.

HOLE

Responds only to generic messages and is a "black hole" for data. Useful for testing. Always

accepts new hooks.

ECHO

Responds only to generic messages and always echoes data back through the hook from which it

arrived. Returns any non-generic messages as their own response. Useful for testing. Always

accepts new hooks.

TEE This node is useful for "snooping". It has 4 hooks: left, right, left2right, and right2left. Data

entering from the right is passed to the left and duplicated on right2left, and data entering from

the left is passed to the right and duplicated on left2right. Data entering from left2right is sent to

the right and data from right2left to left.

RFC1490 MUX

Encapsulates/de-encapsulates frames encoded according to RFC 1490. Has a hook for the

encapsulated packets (downstream) and one hook for each protocol (i.e., IP, PPP, etc.).

FRAME RELAY MUX

Encapsulates/de-encapsulates Frame Relay frames. Has a hook for the encapsulated packets

(downstream) and one hook for each DLCI.

FRAME RELAY LMI

Automatically handles frame relay "LMI" (link management interface) operations and packets.

Automatically probes and detects which of several LMI standards is in use at the exchange.

TTY This node is also a line discipline. It simply converts between mbuf frames and sequential serial

data, allowing a TTY to appear as a netgraph node. It has a programmable "hotkey" character.

ASYNC

This node encapsulates and de-encapsulates asynchronous frames according to RFC 1662. This

is used in conjunction with the TTY node type for supporting PPP links over asynchronous serial

lines.

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

ETHERNET

This node is attached to every Ethernet interface in the system. It allows capturing raw Ethernet

frames from the network, as well as sending frames out of the interface.

INTERFACE

This node is also a system networking interface. It has hooks representing each protocol family

(IP, IPv6) and appears in the output of ifconfig(8). The interfaces are named "ng0", "ng1", etc.

ONE2MANY

This node implements a simple round-robin multiplexer. It can be used for example to make

several LAN ports act together to get a higher speed link between two machines.

Various PPP related nodes

There is a full multilink PPP implementation that runs in netgraph. The net/mpd5 port can use

these modules to make a very low latency high capacity PPP system. It also supports PPTP

VPNs using the PPTP node.

PPPOE

A server and client side implementation of PPPoE. Used in conjunction with either ppp(8) or the

net/mpd5 port.

BRIDGE

This node, together with the Ethernet nodes, allows a very flexible bridging system to be

implemented.

KSOCKET

This intriguing node looks like a socket to the system but diverts all data to and from the

netgraph system for further processing. This allows such things as UDP tunnels to be almost

trivially implemented from the command line.

Refer to the section at the end of this man page for more nodes types.

NOTES
Whether a named node exists can be checked by trying to send a control message to it (e.g.,

NGM_NODEINFO). If it does not exist, ENOENT will be returned.

All data messages are mbuf chains with the M_PKTHDR flag set.

Nodes are responsible for freeing what they allocate. There are three exceptions:

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

1. Mbufs sent across a data link are never to be freed by the sender. In the case of error, they should

be considered freed.

2. Messages sent using one of NG_SEND_MSG_*() family macros are freed by the recipient. As in

the case above, the addresses associated with the message are freed by whatever allocated them so

the recipient should copy them if it wants to keep that information.

3. Both control messages and data are delivered and queued with a netgraph item. The item must be

freed using NG_FREE_ITEM(item) or passed on to another node.

FILES
<netgraph/netgraph.h>

Definitions for use solely within the kernel by netgraph nodes.

<netgraph/ng_message.h>

Definitions needed by any file that needs to deal with netgraph messages.

<netgraph/ng_socket.h>

Definitions needed to use netgraph socket type nodes.

<netgraph/ng_><type>.h

Definitions needed to use netgraph type nodes, including the type cookie definition.

/boot/kernel/netgraph.ko

The netgraph subsystem loadable KLD module.

/boot/kernel/ng_<type>.ko

Loadable KLD module for node type type.

src/sys/netgraph/ng_sample.c

Skeleton netgraph node. Use this as a starting point for new node types.

USER MODE SUPPORT
There is a library for supporting user-mode programs that wish to interact with the netgraph system. See

netgraph(3) for details.

Two user-mode support programs, ngctl(8) and nghook(8), are available to assist manual configuration

and debugging.

There are a few useful techniques for debugging new node types. First, implementing new node types in

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

user-mode first makes debugging easier. The tee node type is also useful for debugging, especially in

conjunction with ngctl(8) and nghook(8).

Also look in /usr/share/examples/netgraph for solutions to several common networking problems, solved

using netgraph.

SEE ALSO
socket(2), netgraph(3), ng_async(4), ng_bluetooth(4), ng_bpf(4), ng_bridge(4), ng_btsocket(4),

ng_car(4), ng_cisco(4), ng_device(4), ng_echo(4), ng_eiface(4), ng_etf(4), ng_ether(4),

ng_frame_relay(4), ng_gif(4), ng_gif_demux(4), ng_hci(4), ng_hole(4), ng_hub(4), ng_iface(4),

ng_ip_input(4), ng_ipfw(4), ng_ksocket(4), ng_l2cap(4), ng_l2tp(4), ng_lmi(4), ng_mppc(4), ng_nat(4),

ng_netflow(4), ng_one2many(4), ng_patch(4), ng_ppp(4), ng_pppoe(4), ng_pptpgre(4), ng_rfc1490(4),

ng_socket(4), ng_split(4), ng_tee(4), ng_tty(4), ng_ubt(4), ng_UI(4), ng_vjc(4), ng_vlan(4), ngctl(8),

nghook(8)

HISTORY
The netgraph system was designed and first implemented at Whistle Communications, Inc. in a version

of FreeBSD 2.2 customized for the Whistle InterJet. It first made its debut in the main tree in

FreeBSD 3.4.

AUTHORS
Julian Elischer <julian@FreeBSD.org>, with contributions by Archie Cobbs <archie@FreeBSD.org>.

NETGRAPH(4) FreeBSD Kernel Interfaces Manual NETGRAPH(4)

FreeBSD 14.0-RELEASE-p11 September 29, 2021 FreeBSD 14.0-RELEASE-p11

