
NAME
netisr - Kernel network dispatch service

SYNOPSIS
#include <net/netisr.h>

void

netisr_register(const struct netisr_handler *nhp);

void

netisr_unregister(const struct netisr_handler *nhp);

int

netisr_dispatch(u_int proto, struct mbuf *m);

int

netisr_dispatch_src(u_int proto, uintptr_t source, struct mbuf *m);

int

netisr_queue(u_int proto, struct mbuf *m);

int

netisr_queue_src(u_int proto, uintptr_t source, struct mbuf *m);

void

netisr_clearqdrops(const struct netisr_handler *nhp);

void

netisr_getqdrops(const struct netisr_handler *nhp, uint64_t *qdropsp);

void

netisr_getqlimit(const struct netisr_handler *nhp, u_int *qlimitp);

int

netisr_setqlimit(const struct netisr_handler *nhp, u_int qlimit);

u_int

netisr_default_flow2cpu(u_int flowid);

u_int

NETISR(9) FreeBSD Kernel Developer’s Manual NETISR(9)

FreeBSD 14.2-RELEASE April 12, 2023 FreeBSD 14.2-RELEASE



netisr_get_cpucount(void);

u_int

netisr_get_cpuid(u_int cpunumber);

With optional virtual network stack support enabled via the following kernel compile option:

options VIMAGE
void

netisr_register_vnet(const struct netisr_handler *nhp);

void

netisr_unregister_vnet(const struct netisr_handler *nhp);

DESCRIPTION
The netisr kernel interface suite allows device drivers (and other packet sources) to direct packets to

protocols for directly dispatched or deferred processing. Protocol registration and work stream statistics

may be monitored using netstat(1).

Protocol registration
Protocols register and unregister handlers using netisr_register() and netisr_unregister(), and may also

manage queue limits and statistics using the netisr_clearqdrops(), netisr_getqdrops(), netisr_getqlimit(),
and netisr_setqlimit().

In case of VIMAGE kernels each virtual network stack (vnet), that is not the default base system

network stack, calls netisr_register_vnet() and netisr_unregister_vnet() to enable or disable packet

processing by the netisr for each protocol. Disabling will also purge any outstanding packet from the

protocol queue.

netisr supports multi-processor execution of handlers, and relies on a combination of source ordering

and protocol-specific ordering and work-placement policies to decide how to distribute work across one

or more worker threads. Registering protocols will declare one of three policies:

NETISR_POLICY_SOURCE netisr should maintain source ordering without advice from the protocol.

netisr will ignore any flow IDs present on mbuf headers for the purposes

of work placement.

NETISR_POLICY_FLOW netisr should maintain flow ordering as defined by the mbuf header flow

ID field. If the protocol implements nh_m2flow, then netisr will query

the protocol in the event that the mbuf doesn’t have a flow ID, falling

NETISR(9) FreeBSD Kernel Developer’s Manual NETISR(9)

FreeBSD 14.2-RELEASE April 12, 2023 FreeBSD 14.2-RELEASE



back on source ordering.

NETISR_POLICY_CPU netisr will entirely delegate all work placement decisions to the protocol,

querying nh_m2cpuid for each packet.

Registration is declared using struct netisr_handler, whose fields are defined as follows:

const char * nh_name Unique character string name of the protocol, which may be included in

sysctl(3) MIB names, so should not contain whitespace.

netisr_handler_t nh_handler Protocol handler function that will be invoked on each packet received for

the protocol.

netisr_m2flow_t nh_m2flow

Optional protocol function to generate a flow ID and set a valid hashtype

for packets that enter the netisr with M_HASHTYPE_GET(m) equal to

M_HASHTYPE_NONE. Will be used only with

NETISR_POLICY_FLOW.

netisr_m2cpuid_t nh_m2cpuid

Protocol function to determine what CPU a packet should be processed on.

Will be used only with NETISR_POLICY_CPU.

netisr_drainedcpu_t nh_drainedcpu

Optional callback function that will be invoked when a per-CPU queue was

drained. It will never fire for directly dispatched packets. Unless fully

understood, this special-purpose function should not be used.

u_int nh_proto Protocol number used by both protocols to identify themselves to netisr,

and by packet sources to select what handler will be used to process

packets. A table of supported protocol numbers appears below. For

implementation reasons, protocol numbers great than 15 are currently

unsupported.

u_int nh_qlimit The maximum per-CPU queue depth for the protocol; due to internal

implementation details, the effective queue depth may be as much as twice

this number.

u_int nh_policy The ordering and work placement policy for the protocol, as described

earlier.

NETISR(9) FreeBSD Kernel Developer’s Manual NETISR(9)

FreeBSD 14.2-RELEASE April 12, 2023 FreeBSD 14.2-RELEASE



Packet source interface
Packet sources, such as network interfaces, may request protocol processing using the netisr_dispatch()

and netisr_queue() interfaces. Both accept a protocol number and mbuf argument, but while

netisr_queue() will always execute the protocol handler asynchronously in a deferred context,

netisr_dispatch() will optionally direct dispatch if permitted by global and per-protocol policy.

In order to provide additional load balancing and flow information, packet sources may also specify an

opaque source identifier, which in practice might be a network interface number or socket pointer, using

the netisr_dispatch_src() and netisr_queue_src() variants.

Protocol number constants
The follow protocol numbers are currently defined:

NETISR_IP IPv4

NETISR_IGMP IGMPv3 loopback

NETISR_ROUTE Routing socket loopback

NETISR_ARP ARP

NETISR_IPV6 IPv6

AUTHORS
This manual page and the netisr implementation were written by Robert N. M. Watson.

NETISR(9) FreeBSD Kernel Developer’s Manual NETISR(9)

FreeBSD 14.2-RELEASE April 12, 2023 FreeBSD 14.2-RELEASE


