
NAME
Netlink - Kernel network configuration protocol

SYNOPSIS
#include <netlink/netlink.h>
#include <netlink/netlink_route.h>

int

socket(AF_NETLINK, SOCK_RAW, int family);

DESCRIPTION
Netlink is a user-kernel message-based communication protocol primarily used for network stack

configuration. Netlink is easily extendable and supports large dumps and event notifications, all via a

single socket. The protocol is fully asynchronous, allowing one to issue and track multiple requests at

once. Netlink consists of multiple families, which commonly group the commands belonging to the

particular kernel subsystem. Currently, the supported families are:

NETLINK_ROUTE network configuration,

NETLINK_GENERIC "container" family

The NETLINK_ROUTE family handles all interfaces, addresses, neighbors, routes, and VNETs

configuration. More details can be found in rtnetlink(4). The NETLINK_GENERIC family serves as a

"container", allowing registering other families under the NETLINK_GENERIC umbrella. This

approach allows using a single netlink socket to interact with multiple netlink families at once. More

details can be found in genetlink(4).

Netlink has its own sockaddr structure:

struct sockaddr_nl {

uint8_t nl_len; /* sizeof(sockaddr_nl) */

sa_family_t nl_family; /* netlink family */

uint16_t nl_pad; /* reserved, set to 0 */

uint32_t nl_pid; /* automatically selected, set to 0 */

uint32_t nl_groups; /* multicast groups mask to bind to */

};

Typically, filling this structure is not required for socket operations. It is presented here for

completeness.

PROTOCOL DESCRIPTION

NETLINK(4) FreeBSD Kernel Interfaces Manual NETLINK(4)

FreeBSD 14.2-RELEASE November 30, 2022 FreeBSD 14.2-RELEASE



The protocol is message-based. Each message starts with the mandatory nlmsghdr header, followed by

the family-specific header and the list of type-length-value pairs (TLVs). TLVs can be nested. All

headers and TLVS are padded to 4-byte boundaries. Each send(2) or recv(2) system call may contain

multiple messages.

BASE HEADER
struct nlmsghdr {

uint32_t nlmsg_len; /* Length of message including header */

uint16_t nlmsg_type; /* Message type identifier */

uint16_t nlmsg_flags; /* Flags (NLM_F_) */

uint32_t nlmsg_seq; /* Sequence number */

uint32_t nlmsg_pid; /* Sending process port ID */

};

The nlmsg_len field stores the whole message length, in bytes, including the header. This length has to

be rounded up to the nearest 4-byte boundary when iterating over messages. The nlmsg_type field

represents the command/request type. This value is family-specific. The list of supported commands

can be found in the relevant family header file. nlmsg_seq is a user-provided request identifier. An

application can track the operation result using the NLMSG_ERROR messages and matching the

nlmsg_seq The nlmsg_pid field is the message sender id. This field is optional for userland. The kernel

sender id is zero. The nlmsg_flags field contains the message-specific flags. The following generic

flags are defined:

NLM_F_REQUEST Indicates that the message is an actual request to the kernel

NLM_F_ACK Request an explicit ACK message with an operation result

The following generic flags are defined for the "GET" request types:

NLM_F_ROOT Return the whole dataset

NLM_F_MATCH Return all entries matching the criteria

These two flags are typically used together, aliased to NLM_F_DUMP

The following generic flags are defined for the "NEW" request types:

NLM_F_CREATE Create an object if none exists

NLM_F_EXCL Don’t replace an object if it exists

NLM_F_REPLACE Replace an existing matching object

NLM_F_APPEND Append to an existing object

The following generic flags are defined for the replies:

NETLINK(4) FreeBSD Kernel Interfaces Manual NETLINK(4)

FreeBSD 14.2-RELEASE November 30, 2022 FreeBSD 14.2-RELEASE



NLM_F_MULTI Indicates that the message is part of the message group

NLM_F_DUMP_INTR Indicates that the state dump was not completed

NLM_F_DUMP_FILTEREDIndicates that the dump was filtered per request

NLM_F_CAPPED Indicates the original message was capped to its header

NLM_F_ACK_TLVS Indicates that extended ACK TLVs were included

TLVs
Most messages encode their attributes as type-length-value pairs (TLVs). The base TLV header:

struct nlattr {

uint16_t nla_len; /* Total attribute length */

uint16_t nla_type; /* Attribute type */

};

The TLV type (nla_type) scope is typically the message type or group within a family. For example, the

RTN_MULTICAST type value is only valid for RTM_NEWROUTE , RTM_DELROUTE and

RTM_GETROUTE messages. TLVs can be nested; in that case internal TLVs may have their own sub-

types. All TLVs are packed with 4-byte padding.

CONTROL MESSAGES
A number of generic control messages are reserved in each family.

NLMSG_ERROR reports the operation result if requested, optionally followed by the metadata TLVs.

The value of nlmsg_seq is set to its value in the original messages, while nlmsg_pid is set to the socket

pid of the original socket. The operation result is reported via struct nlmsgerr:

struct nlmsgerr {

int error; /* Standard errno */

struct nlmsghdr msg; /* Original message header */

};

If the NETLINK_CAP_ACK socket option is not set, the remainder of the original message will follow.

If the NETLINK_EXT_ACK socket option is set, the kernel may add a NLMSGERR_ATTR_MSG

string TLV with the textual error description, optionally followed by the NLMSGERR_ATTR_OFFS

TLV, indicating the offset from the message start that triggered an error. Some operations may return

additional metadata encapsulated in the NLMSGERR_ATTR_COOKIE TLV. The metadata format is

specific to the operation. If the operation reply is a multipart message, then no NLMSG_ERROR reply

is generated, only a NLMSG_DONE message, closing multipart sequence.

NLMSG_DONE indicates the end of the message group: typically, the end of the dump. It contains a

single int field, describing the dump result as a standard errno value.

NETLINK(4) FreeBSD Kernel Interfaces Manual NETLINK(4)

FreeBSD 14.2-RELEASE November 30, 2022 FreeBSD 14.2-RELEASE



SOCKET OPTIONS
Netlink supports a number of custom socket options, which can be set with setsockopt(2) with the

SOL_NETLINK level:

NETLINK_ADD_MEMBERSHIP

Subscribes to the notifications for the specific group (int).

NETLINK_DROP_MEMBERSHIP

Unsubscribes from the notifications for the specific group (int).

NETLINK_LIST_MEMBERSHIPS

Lists the memberships as a bitmask.

NETLINK_CAP_ACK

Instructs the kernel to send the original message header in the reply without the message body.

NETLINK_EXT_ACK

Acknowledges ability to receive additional TLVs in the ACK message.

Additionally, netlink overrides the following socket options from the SOL_SOCKET level:

SO_RCVBUF

Sets the maximum size of the socket receive buffer. If the caller has PRIV_NET_ROUTE

permission, the value can exceed the currently-set kern.ipc.maxsockbuf value.

SYSCTL VARIABLES
A set of sysctl(8) variables is available to tweak run-time parameters:

net.netlink.sendspace

Default send buffer for the netlink socket. Note that the socket sendspace has to be at least as

long as the longest message that can be transmitted via this socket.

net.netlink.recvspace

Default receive buffer for the netlink socket. Note that the socket recvspace has to be least as

long as the longest message that can be received from this socket.

net.netlink.nl_maxsockbuf

Maximum receive buffer for the netlink socket that can be set via SO_RCVBUF socket option.

DEBUGGING

NETLINK(4) FreeBSD Kernel Interfaces Manual NETLINK(4)

FreeBSD 14.2-RELEASE November 30, 2022 FreeBSD 14.2-RELEASE



Netlink implements per-functional-unit debugging, with different severities controllable via the

net.netlink.debug branch. These messages are logged in the kernel message buffer and can be seen in

dmesg(8) The following severity levels are defined:

LOG_DEBUG(7)

Rare events or per-socket errors are reported here. This is the default level, not impacting

production performance.

LOG_DEBUG2(8)

Socket events such as groups memberships, privilege checks, commands and dumps are logged.

This level does not incur significant performance overhead.

LOG_DEBUG3(9)

All socket events, each dumped or modified entities are logged. Turning it on may result in

significant performance overhead.

ERRORS
Netlink reports operation results, including errors and error metadata, by sending a NLMSG_ERROR

message for each request message. The following errors can be returned:

[EPERM] when the current privileges are insufficient to perform the required operation;

[ENOBUFS] or [ENOMEM]

when the system runs out of memory for an internal data structure;

[ENOTSUP] when the requested command is not supported by the family or the family is not

supported;

[EINVAL] when some necessary TLVs are missing or invalid, detailed info may be provided

in NLMSGERR_ATTR_MSG and NLMSGERR_ATTR_OFFS TLVs;

[ENOENT] when trying to delete a non-existent object.

Additionally, a socket operation itself may fail with one of the errors specified in

socket(2) , recv(2) or send(2)

SEE ALSO
genetlink(4), rtnetlink(4)

J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, Linux Netlink as an IP Services Protocol, RFC

NETLINK(4) FreeBSD Kernel Interfaces Manual NETLINK(4)

FreeBSD 14.2-RELEASE November 30, 2022 FreeBSD 14.2-RELEASE



3549.

HISTORY
The netlink protocol appeared in FreeBSD 13.2.

AUTHORS
The netlink was implemented by Alexander Chernikov <melifaro@FreeBSD.org>. It was derived from

the Google Summer of Code 2021 project by Ng Peng Nam Sean.

NETLINK(4) FreeBSD Kernel Interfaces Manual NETLINK(4)

FreeBSD 14.2-RELEASE November 30, 2022 FreeBSD 14.2-RELEASE


